Spaces:
Build error
Build error
wisdom196473
commited on
Commit
·
1fd9ec2
0
Parent(s):
Initial commit
Browse files- .gitignore +7 -0
- .ipynb_checkpoints/README-checkpoint.md +46 -0
- .ipynb_checkpoints/Vision_AI-checkpoint.ipynb +0 -0
- .ipynb_checkpoints/model-checkpoint.py +762 -0
- README.md +46 -0
- Vision_AI.ipynb +0 -0
- amazon_app.py +269 -0
- clip_embedding_evaluation_results/evaluation_metrics.csv +2 -0
- model.py +762 -0
- requirements.txt +14 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.pyc
|
3 |
+
.env
|
4 |
+
.venv/
|
5 |
+
venv/
|
6 |
+
.idea/
|
7 |
+
.vscode/
|
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Amazon E-commerce Visual Assistant
|
2 |
+
|
3 |
+
A multimodal AI assistant that helps users search and explore Amazon products through natural language and image-based interactions.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- Text and image-based product search
|
8 |
+
- Product comparisons and recommendations
|
9 |
+
- Visual product recognition
|
10 |
+
- Detailed product information retrieval
|
11 |
+
- Price analysis and comparison
|
12 |
+
|
13 |
+
## Technologies Used
|
14 |
+
|
15 |
+
- FashionCLIP for visual understanding
|
16 |
+
- Mistral-7B Language Model for text generation
|
17 |
+
- FAISS for efficient similarity search
|
18 |
+
- Streamlit for the user interface
|
19 |
+
|
20 |
+
## Setup and Installation
|
21 |
+
|
22 |
+
1. Clone the repository:
|
23 |
+
```bash
|
24 |
+
git clone https://github.com/wisdom196473/amazon-multimodal-product-assistant.git
|
25 |
+
cd amazon-multimodal-product-assistant
|
26 |
+
```
|
27 |
+
|
28 |
+
2. Install dependencies:
|
29 |
+
```bash
|
30 |
+
pip install -r requirements.txt
|
31 |
+
```
|
32 |
+
|
33 |
+
3. Run the application:
|
34 |
+
```bash
|
35 |
+
streamlit run amazon_app.py
|
36 |
+
```
|
37 |
+
|
38 |
+
## Project Structure
|
39 |
+
|
40 |
+
- `amazon_app.py`: Main Streamlit application
|
41 |
+
- `model.py`: Core AI model implementations
|
42 |
+
- `requirements.txt`: Project dependencies
|
43 |
+
|
44 |
+
## License
|
45 |
+
|
46 |
+
MIT License
|
.ipynb_checkpoints/Vision_AI-checkpoint.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/model-checkpoint.py
ADDED
@@ -0,0 +1,762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Standard libraries
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from typing import Dict, List, Tuple, Optional
|
8 |
+
import requests
|
9 |
+
from PIL import Image
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from io import BytesIO
|
12 |
+
|
13 |
+
# Deep learning frameworks
|
14 |
+
import torch
|
15 |
+
from torch.cuda.amp import autocast
|
16 |
+
import open_clip
|
17 |
+
|
18 |
+
# Hugging Face
|
19 |
+
from transformers import (
|
20 |
+
AutoTokenizer,
|
21 |
+
AutoModelForCausalLM,
|
22 |
+
BitsAndBytesConfig,
|
23 |
+
pipeline,
|
24 |
+
PreTrainedModel,
|
25 |
+
PreTrainedTokenizer
|
26 |
+
)
|
27 |
+
from huggingface_hub import hf_hub_download
|
28 |
+
from langchain.prompts import PromptTemplate
|
29 |
+
|
30 |
+
# Vector database
|
31 |
+
import faiss
|
32 |
+
|
33 |
+
# Type hints
|
34 |
+
from typing import Dict, List, Tuple, Optional, Union
|
35 |
+
|
36 |
+
# Global variables
|
37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
clip_model: Optional[PreTrainedModel] = None
|
39 |
+
clip_preprocess: Optional[callable] = None
|
40 |
+
clip_tokenizer: Optional[PreTrainedTokenizer] = None
|
41 |
+
llm_tokenizer: Optional[PreTrainedTokenizer] = None
|
42 |
+
llm_model: Optional[PreTrainedModel] = None
|
43 |
+
product_df: Optional[pd.DataFrame] = None
|
44 |
+
metadata: Dict = {}
|
45 |
+
embeddings_df: Optional[pd.DataFrame] = None
|
46 |
+
text_faiss: Optional[object] = None
|
47 |
+
image_faiss: Optional[object] = None
|
48 |
+
|
49 |
+
def initialize_models() -> bool:
|
50 |
+
"""
|
51 |
+
Initialize CLIP and LLM models with proper error handling and GPU optimization.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
bool: True if initialization successful, raises RuntimeError otherwise
|
55 |
+
"""
|
56 |
+
global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
57 |
+
|
58 |
+
try:
|
59 |
+
print(f"Initializing models on device: {device}")
|
60 |
+
|
61 |
+
# Initialize CLIP model with error handling
|
62 |
+
try:
|
63 |
+
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
64 |
+
'hf-hub:Marqo/marqo-fashionCLIP'
|
65 |
+
)
|
66 |
+
clip_model = clip_model.to(device)
|
67 |
+
clip_model.eval()
|
68 |
+
clip_tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
|
69 |
+
print("CLIP model initialized successfully")
|
70 |
+
except Exception as e:
|
71 |
+
raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
72 |
+
|
73 |
+
# Initialize LLM with optimized settings
|
74 |
+
try:
|
75 |
+
model_name = "mistralai/Mistral-7B-v0.1"
|
76 |
+
quantization_config = BitsAndBytesConfig(
|
77 |
+
load_in_4bit=True,
|
78 |
+
bnb_4bit_compute_dtype=torch.float16,
|
79 |
+
bnb_4bit_use_double_quant=True,
|
80 |
+
bnb_4bit_quant_type="nf4"
|
81 |
+
)
|
82 |
+
|
83 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(
|
84 |
+
model_name,
|
85 |
+
padding_side="left",
|
86 |
+
truncation_side="left"
|
87 |
+
)
|
88 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
89 |
+
|
90 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
91 |
+
model_name,
|
92 |
+
quantization_config=quantization_config,
|
93 |
+
device_map="auto",
|
94 |
+
torch_dtype=torch.float16
|
95 |
+
)
|
96 |
+
llm_model.eval()
|
97 |
+
print("LLM initialized successfully")
|
98 |
+
except Exception as e:
|
99 |
+
raise RuntimeError(f"Failed to initialize LLM: {str(e)}")
|
100 |
+
|
101 |
+
return True
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
105 |
+
|
106 |
+
# Data loading
|
107 |
+
def load_data() -> bool:
|
108 |
+
"""
|
109 |
+
Load and initialize all required data with enhanced metadata support and error handling.
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
bool: True if data loading successful, raises RuntimeError otherwise
|
113 |
+
"""
|
114 |
+
global product_df, metadata, embeddings_df, text_faiss, image_faiss
|
115 |
+
|
116 |
+
try:
|
117 |
+
print("Loading product data...")
|
118 |
+
# Load cleaned product data
|
119 |
+
try:
|
120 |
+
cleaned_data_path = hf_hub_download(
|
121 |
+
repo_id="chen196473/amazon_product_2020_cleaned",
|
122 |
+
filename="amazon_cleaned.parquet",
|
123 |
+
repo_type="dataset"
|
124 |
+
)
|
125 |
+
product_df = pd.read_parquet(cleaned_data_path)
|
126 |
+
|
127 |
+
# Add validation columns
|
128 |
+
product_df['Has_Valid_Image'] = product_df['Processed Image'].notna()
|
129 |
+
product_df['Image_Status'] = product_df['Has_Valid_Image'].map({
|
130 |
+
True: 'valid',
|
131 |
+
False: 'invalid'
|
132 |
+
})
|
133 |
+
print("Product data loaded successfully")
|
134 |
+
except Exception as e:
|
135 |
+
raise RuntimeError(f"Failed to load product data: {str(e)}")
|
136 |
+
|
137 |
+
# Load enhanced metadata
|
138 |
+
print("Loading metadata...")
|
139 |
+
try:
|
140 |
+
metadata = {}
|
141 |
+
metadata_files = [
|
142 |
+
'base_metadata.json',
|
143 |
+
'category_index.json',
|
144 |
+
'price_range_index.json',
|
145 |
+
'keyword_index.json',
|
146 |
+
'brand_index.json',
|
147 |
+
'product_name_index.json'
|
148 |
+
]
|
149 |
+
|
150 |
+
for file in metadata_files:
|
151 |
+
file_path = hf_hub_download(
|
152 |
+
repo_id="chen196473/amazon_product_2020_metadata",
|
153 |
+
filename=file,
|
154 |
+
repo_type="dataset"
|
155 |
+
)
|
156 |
+
with open(file_path, 'r') as f:
|
157 |
+
index_name = file.replace('.json', '')
|
158 |
+
data = json.load(f)
|
159 |
+
|
160 |
+
if index_name == 'base_metadata':
|
161 |
+
data = {item['Uniq_Id']: item for item in data}
|
162 |
+
for item in data.values():
|
163 |
+
if 'Keywords' in item:
|
164 |
+
item['Keywords'] = set(item['Keywords'])
|
165 |
+
|
166 |
+
metadata[index_name] = data
|
167 |
+
print("Metadata loaded successfully")
|
168 |
+
except Exception as e:
|
169 |
+
raise RuntimeError(f"Failed to load metadata: {str(e)}")
|
170 |
+
|
171 |
+
# Load embeddings
|
172 |
+
print("Loading embeddings...")
|
173 |
+
try:
|
174 |
+
text_embeddings_dict, image_embeddings_dict = load_embeddings_from_huggingface(
|
175 |
+
"chen196473/amazon_vector_database"
|
176 |
+
)
|
177 |
+
|
178 |
+
# Create embeddings DataFrame
|
179 |
+
embeddings_df = pd.DataFrame({
|
180 |
+
'text_embeddings': list(text_embeddings_dict.values()),
|
181 |
+
'image_embeddings': list(image_embeddings_dict.values()),
|
182 |
+
'Uniq_Id': list(text_embeddings_dict.keys())
|
183 |
+
})
|
184 |
+
|
185 |
+
# Merge with product data
|
186 |
+
product_df = product_df.merge(
|
187 |
+
embeddings_df,
|
188 |
+
left_on='Uniq Id',
|
189 |
+
right_on='Uniq_Id',
|
190 |
+
how='inner'
|
191 |
+
)
|
192 |
+
print("Embeddings loaded and merged successfully")
|
193 |
+
|
194 |
+
# Create FAISS indexes
|
195 |
+
print("Creating FAISS indexes...")
|
196 |
+
try:
|
197 |
+
create_faiss_indexes(text_embeddings_dict, image_embeddings_dict)
|
198 |
+
print("FAISS indexes created successfully")
|
199 |
+
|
200 |
+
# Verify FAISS indexes are properly initialized and contain data
|
201 |
+
if text_faiss is None or image_faiss is None:
|
202 |
+
raise RuntimeError("FAISS indexes were not properly initialized")
|
203 |
+
|
204 |
+
# Test a simple query to verify indexes are working
|
205 |
+
test_query = "test"
|
206 |
+
tokens = clip_tokenizer(test_query).to(device)
|
207 |
+
with torch.no_grad():
|
208 |
+
text_embedding = clip_model.encode_text(tokens)
|
209 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
210 |
+
text_embedding = text_embedding.cpu().numpy()
|
211 |
+
|
212 |
+
# Verify search works
|
213 |
+
test_results = text_faiss.search(text_embedding[0], k=1)
|
214 |
+
if not test_results:
|
215 |
+
raise RuntimeError("FAISS indexes are empty")
|
216 |
+
|
217 |
+
print("FAISS indexes verified successfully")
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
raise RuntimeError(f"Failed to create or verify FAISS indexes: {str(e)}")
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
raise RuntimeError(f"Failed to load embeddings: {str(e)}")
|
224 |
+
|
225 |
+
# Validate required columns
|
226 |
+
required_columns = [
|
227 |
+
'Uniq Id', 'Product Name', 'Category', 'Selling Price',
|
228 |
+
'Model Number', 'Image', 'Normalized Description'
|
229 |
+
]
|
230 |
+
missing_cols = set(required_columns) - set(product_df.columns)
|
231 |
+
if missing_cols:
|
232 |
+
raise ValueError(f"Missing required columns: {missing_cols}")
|
233 |
+
|
234 |
+
# Add enhanced metadata fields
|
235 |
+
if 'Search_Text' not in product_df.columns:
|
236 |
+
product_df['Search_Text'] = product_df.apply(
|
237 |
+
lambda x: metadata['base_metadata'].get(x['Uniq Id'], {}).get('Search_Text', ''),
|
238 |
+
axis=1
|
239 |
+
)
|
240 |
+
|
241 |
+
# Final verification of loaded data
|
242 |
+
if product_df is None or product_df.empty:
|
243 |
+
raise RuntimeError("Product DataFrame is empty or not initialized")
|
244 |
+
|
245 |
+
if not metadata:
|
246 |
+
raise RuntimeError("Metadata dictionary is empty")
|
247 |
+
|
248 |
+
if embeddings_df is None or embeddings_df.empty:
|
249 |
+
raise RuntimeError("Embeddings DataFrame is empty or not initialized")
|
250 |
+
|
251 |
+
print("Data loading completed successfully")
|
252 |
+
return True
|
253 |
+
|
254 |
+
except Exception as e:
|
255 |
+
# Clean up any partially loaded data
|
256 |
+
product_df = None
|
257 |
+
metadata = {}
|
258 |
+
embeddings_df = None
|
259 |
+
text_faiss = None
|
260 |
+
image_faiss = None
|
261 |
+
raise RuntimeError(f"Data loading failed: {str(e)}")
|
262 |
+
|
263 |
+
def load_embeddings_from_huggingface(repo_id: str) -> Tuple[Dict, Dict]:
|
264 |
+
"""
|
265 |
+
Load embeddings from Hugging Face repository with enhanced error handling.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
repo_id (str): Hugging Face repository ID
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
Tuple[Dict, Dict]: Dictionaries containing text and image embeddings
|
272 |
+
"""
|
273 |
+
print("Loading embeddings from Hugging Face...")
|
274 |
+
try:
|
275 |
+
file_path = hf_hub_download(
|
276 |
+
repo_id=repo_id,
|
277 |
+
filename="embeddings.parquet",
|
278 |
+
repo_type="dataset"
|
279 |
+
)
|
280 |
+
df = pd.read_parquet(file_path)
|
281 |
+
|
282 |
+
# Extract embedding columns
|
283 |
+
text_cols = [col for col in df.columns if col.startswith('text_embedding_')]
|
284 |
+
image_cols = [col for col in df.columns if col.startswith('image_embedding_')]
|
285 |
+
|
286 |
+
# Create embedding dictionaries
|
287 |
+
text_embeddings_dict = {
|
288 |
+
row['Uniq_Id']: row[text_cols].values.astype(np.float32)
|
289 |
+
for _, row in df.iterrows()
|
290 |
+
}
|
291 |
+
image_embeddings_dict = {
|
292 |
+
row['Uniq_Id']: row[image_cols].values.astype(np.float32)
|
293 |
+
for _, row in df.iterrows()
|
294 |
+
}
|
295 |
+
|
296 |
+
print(f"Successfully loaded {len(text_embeddings_dict)} embeddings")
|
297 |
+
return text_embeddings_dict, image_embeddings_dict
|
298 |
+
|
299 |
+
except Exception as e:
|
300 |
+
raise RuntimeError(f"Failed to load embeddings from Hugging Face: {str(e)}")
|
301 |
+
|
302 |
+
# FAISS index creation
|
303 |
+
class MultiModalFAISSIndex:
|
304 |
+
def __init__(self, dimension, index_type='L2'):
|
305 |
+
import faiss
|
306 |
+
self.dimension = dimension
|
307 |
+
self.index = faiss.IndexFlatL2(dimension) if index_type == 'L2' else faiss.IndexFlatIP(dimension)
|
308 |
+
self.id_to_metadata = {}
|
309 |
+
|
310 |
+
def add_embeddings(self, embeddings, metadata_list):
|
311 |
+
import numpy as np
|
312 |
+
embeddings = np.array(embeddings).astype('float32')
|
313 |
+
self.index.add(embeddings)
|
314 |
+
for i, metadata in enumerate(metadata_list):
|
315 |
+
self.id_to_metadata[i] = metadata
|
316 |
+
|
317 |
+
def search(self, query_embedding, k=5):
|
318 |
+
import numpy as np
|
319 |
+
query_embedding = np.array([query_embedding]).astype('float32')
|
320 |
+
distances, indices = self.index.search(query_embedding, k)
|
321 |
+
results = []
|
322 |
+
for idx in indices[0]:
|
323 |
+
if idx in self.id_to_metadata:
|
324 |
+
results.append(self.id_to_metadata[idx])
|
325 |
+
return results
|
326 |
+
|
327 |
+
def create_faiss_indexes(text_embeddings_dict, image_embeddings_dict):
|
328 |
+
"""Create FAISS indexes with error handling"""
|
329 |
+
global text_faiss, image_faiss
|
330 |
+
|
331 |
+
try:
|
332 |
+
# Get embedding dimension
|
333 |
+
text_dim = next(iter(text_embeddings_dict.values())).shape[0]
|
334 |
+
image_dim = next(iter(image_embeddings_dict.values())).shape[0]
|
335 |
+
|
336 |
+
# Create indexes
|
337 |
+
text_faiss = MultiModalFAISSIndex(text_dim)
|
338 |
+
image_faiss = MultiModalFAISSIndex(image_dim)
|
339 |
+
|
340 |
+
# Prepare text embeddings and metadata
|
341 |
+
text_embeddings = []
|
342 |
+
text_metadata = []
|
343 |
+
for text_id, embedding in text_embeddings_dict.items():
|
344 |
+
if text_id in product_df['Uniq Id'].values:
|
345 |
+
product = product_df[product_df['Uniq Id'] == text_id].iloc[0]
|
346 |
+
text_embeddings.append(embedding)
|
347 |
+
text_metadata.append({
|
348 |
+
'id': text_id,
|
349 |
+
'description': product['Normalized Description'],
|
350 |
+
'product_name': product['Product Name']
|
351 |
+
})
|
352 |
+
|
353 |
+
# Add text embeddings
|
354 |
+
if text_embeddings:
|
355 |
+
text_faiss.add_embeddings(text_embeddings, text_metadata)
|
356 |
+
|
357 |
+
# Prepare image embeddings and metadata
|
358 |
+
image_embeddings = []
|
359 |
+
image_metadata = []
|
360 |
+
for image_id, embedding in image_embeddings_dict.items():
|
361 |
+
if image_id in product_df['Uniq Id'].values:
|
362 |
+
product = product_df[product_df['Uniq Id'] == image_id].iloc[0]
|
363 |
+
image_embeddings.append(embedding)
|
364 |
+
image_metadata.append({
|
365 |
+
'id': image_id,
|
366 |
+
'image_url': product['Image'],
|
367 |
+
'product_name': product['Product Name']
|
368 |
+
})
|
369 |
+
|
370 |
+
# Add image embeddings
|
371 |
+
if image_embeddings:
|
372 |
+
image_faiss.add_embeddings(image_embeddings, image_metadata)
|
373 |
+
|
374 |
+
return True
|
375 |
+
|
376 |
+
except Exception as e:
|
377 |
+
raise RuntimeError(f"Failed to create FAISS indexes: {str(e)}")
|
378 |
+
|
379 |
+
def get_few_shot_product_comparison_template():
|
380 |
+
return """Compare these specific products based on their actual features and specifications:
|
381 |
+
|
382 |
+
Example 1:
|
383 |
+
Question: Compare iPhone 13 and Samsung Galaxy S21
|
384 |
+
Answer: The iPhone 13 features a 6.1-inch Super Retina XDR display and dual 12MP cameras, while the Galaxy S21 has a 6.2-inch Dynamic AMOLED display and triple camera setup. Both phones offer 5G connectivity, but the iPhone uses A15 Bionic chip while S21 uses Snapdragon 888.
|
385 |
+
|
386 |
+
Example 2:
|
387 |
+
Question: Compare Amazon Echo Dot and Google Nest Mini
|
388 |
+
Answer: The Amazon Echo Dot features Alexa voice assistant and a 1.6-inch speaker, while the Google Nest Mini comes with Google Assistant and a 40mm driver. Both devices offer smart home control and music playback, but differ in their ecosystem integration.
|
389 |
+
|
390 |
+
Current Question: {query}
|
391 |
+
Context: {context}
|
392 |
+
|
393 |
+
Guidelines:
|
394 |
+
- Only compare the specific products mentioned in the query
|
395 |
+
- Focus on actual product features and specifications
|
396 |
+
- Keep response to 2-3 clear sentences
|
397 |
+
- Ensure factual accuracy based on the context provided
|
398 |
+
|
399 |
+
Answer:"""
|
400 |
+
|
401 |
+
def get_zero_shot_product_template():
|
402 |
+
return """You are a product information specialist. Describe only the specific product's actual features based on the provided context.
|
403 |
+
|
404 |
+
Context: {context}
|
405 |
+
|
406 |
+
Question: {query}
|
407 |
+
|
408 |
+
Guidelines:
|
409 |
+
- Only describe the specific product mentioned in the query
|
410 |
+
- Focus on actual features and specifications from the context
|
411 |
+
- Keep response to 2-3 factual sentences
|
412 |
+
- Ensure information accuracy
|
413 |
+
|
414 |
+
Answer:"""
|
415 |
+
|
416 |
+
def get_zero_shot_image_template():
|
417 |
+
return """Analyze this product image and provide a concise description:
|
418 |
+
|
419 |
+
Product Information:
|
420 |
+
{context}
|
421 |
+
|
422 |
+
Guidelines:
|
423 |
+
- Describe the main product features and intended use
|
424 |
+
- Highlight key specifications and materials
|
425 |
+
- Keep response to 2-3 sentences
|
426 |
+
- Focus on practical information
|
427 |
+
|
428 |
+
Answer:"""
|
429 |
+
|
430 |
+
# Image processing functions
|
431 |
+
def process_image(image):
|
432 |
+
try:
|
433 |
+
if isinstance(image, str):
|
434 |
+
response = requests.get(image)
|
435 |
+
image = Image.open(io.BytesIO(response.content))
|
436 |
+
|
437 |
+
processed_image = clip_preprocess(image).unsqueeze(0).to(device)
|
438 |
+
|
439 |
+
with torch.no_grad():
|
440 |
+
image_features = clip_model.encode_image(processed_image)
|
441 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
442 |
+
|
443 |
+
return image_features.cpu().numpy()
|
444 |
+
except Exception as e:
|
445 |
+
raise Exception(f"Error processing image: {str(e)}")
|
446 |
+
|
447 |
+
def load_image_from_url(url):
|
448 |
+
response = requests.get(url)
|
449 |
+
if response.status_code == 200:
|
450 |
+
return Image.open(io.BytesIO(response.content))
|
451 |
+
else:
|
452 |
+
raise Exception(f"Failed to fetch image from URL: {url}, Status Code: {response.status_code}")
|
453 |
+
|
454 |
+
# Context retrieval and enhancement
|
455 |
+
def filter_by_metadata(query, metadata_index):
|
456 |
+
relevant_products = set()
|
457 |
+
|
458 |
+
# Check category index
|
459 |
+
if 'category_index' in metadata_index:
|
460 |
+
categories = metadata_index['category_index']
|
461 |
+
for category in categories:
|
462 |
+
if any(term.lower() in category.lower() for term in query.split()):
|
463 |
+
relevant_products.update(categories[category])
|
464 |
+
|
465 |
+
# Check product name index
|
466 |
+
if 'product_name_index' in metadata_index:
|
467 |
+
product_names = metadata_index['product_name_index']
|
468 |
+
for term in query.split():
|
469 |
+
if term.lower() in product_names:
|
470 |
+
relevant_products.update(product_names[term.lower()])
|
471 |
+
|
472 |
+
# Check price ranges
|
473 |
+
price_terms = {'cheap', 'expensive', 'price', 'cost', 'affordable'}
|
474 |
+
if any(term in query.lower() for term in price_terms) and 'price_range_index' in metadata_index:
|
475 |
+
price_ranges = metadata_index['price_range_index']
|
476 |
+
for price_range in price_ranges:
|
477 |
+
relevant_products.update(price_ranges[price_range])
|
478 |
+
|
479 |
+
return relevant_products if relevant_products else None
|
480 |
+
|
481 |
+
def enhance_context_with_metadata(product, metadata_index):
|
482 |
+
"""Enhanced context building using new metadata structure"""
|
483 |
+
# Access base_metadata using product ID directly since it's now a dictionary
|
484 |
+
base_metadata = metadata_index['base_metadata'].get(product['Uniq Id'])
|
485 |
+
|
486 |
+
if base_metadata:
|
487 |
+
# Get keywords and search text from enhanced metadata
|
488 |
+
keywords = base_metadata.get('Keywords', [])
|
489 |
+
search_text = base_metadata.get('Search_Text', '')
|
490 |
+
|
491 |
+
# Build enhanced description
|
492 |
+
description = []
|
493 |
+
description.append(f"Product Name: {base_metadata['Product_Name']}")
|
494 |
+
description.append(f"Category: {base_metadata['Category']}")
|
495 |
+
description.append(f"Price: ${base_metadata['Selling_Price']:.2f}")
|
496 |
+
|
497 |
+
# Add key features from normalized description
|
498 |
+
if 'Normalized_Description' in base_metadata:
|
499 |
+
features = []
|
500 |
+
for feature in base_metadata['Normalized_Description'].split('|'):
|
501 |
+
if ':' in feature:
|
502 |
+
key, value = feature.split(':', 1)
|
503 |
+
if not any(skip in key.lower() for skip in
|
504 |
+
['uniq id', 'product url', 'specifications', 'asin']):
|
505 |
+
features.append(f"{key.strip()}: {value.strip()}")
|
506 |
+
if features:
|
507 |
+
description.append("Key Features:")
|
508 |
+
description.extend(features[:3])
|
509 |
+
|
510 |
+
# Add relevant keywords
|
511 |
+
if keywords:
|
512 |
+
description.append("Related Terms: " + ", ".join(list(keywords)[:5]))
|
513 |
+
|
514 |
+
return "\n".join(description)
|
515 |
+
|
516 |
+
return None
|
517 |
+
|
518 |
+
def retrieve_context(query, image=None, top_k=5):
|
519 |
+
"""Enhanced context retrieval using both FAISS and metadata"""
|
520 |
+
# Initialize context lists
|
521 |
+
similar_items = []
|
522 |
+
context = []
|
523 |
+
|
524 |
+
if image is not None:
|
525 |
+
# Process image query
|
526 |
+
image_embedding = process_image(image)
|
527 |
+
image_embedding = image_embedding.reshape(1, -1)
|
528 |
+
similar_items = image_faiss.search(image_embedding[0], k=top_k)
|
529 |
+
else:
|
530 |
+
# Process text query with enhanced metadata filtering
|
531 |
+
relevant_products = filter_by_metadata(query, metadata)
|
532 |
+
|
533 |
+
tokens = clip_tokenizer(query).to(device)
|
534 |
+
with torch.no_grad():
|
535 |
+
text_embedding = clip_model.encode_text(tokens)
|
536 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
537 |
+
text_embedding = text_embedding.cpu().numpy()
|
538 |
+
|
539 |
+
# Get FAISS results
|
540 |
+
similar_items = text_faiss.search(text_embedding[0], k=top_k*2) # Get more results for filtering
|
541 |
+
|
542 |
+
# Filter results using metadata if available
|
543 |
+
if relevant_products:
|
544 |
+
similar_items = [item for item in similar_items if item['id'] in relevant_products][:top_k]
|
545 |
+
|
546 |
+
# Build enhanced context
|
547 |
+
for item in similar_items:
|
548 |
+
product = product_df[product_df['Uniq Id'] == item['id']].iloc[0]
|
549 |
+
enhanced_context = enhance_context_with_metadata(product, metadata)
|
550 |
+
if enhanced_context:
|
551 |
+
context.append(enhanced_context)
|
552 |
+
|
553 |
+
return "\n\n".join(context), similar_items
|
554 |
+
|
555 |
+
def display_product_images(similar_items, max_images=1):
|
556 |
+
displayed_images = []
|
557 |
+
|
558 |
+
for item in similar_items[:max_images]:
|
559 |
+
try:
|
560 |
+
# Get image URL from product data
|
561 |
+
image_url = item['Image'] if isinstance(item, pd.Series) else item.get('Image')
|
562 |
+
if not image_url:
|
563 |
+
continue
|
564 |
+
|
565 |
+
# Handle multiple image URLs
|
566 |
+
image_urls = image_url.split('|')
|
567 |
+
image_url = image_urls[0] # Take first image
|
568 |
+
|
569 |
+
# Load image
|
570 |
+
response = requests.get(image_url)
|
571 |
+
img = Image.open(BytesIO(response.content))
|
572 |
+
|
573 |
+
# Get product details
|
574 |
+
product_name = item['Product Name'] if isinstance(item, pd.Series) else item.get('product_name')
|
575 |
+
price = item['Selling Price'] if isinstance(item, pd.Series) else item.get('price', 0)
|
576 |
+
|
577 |
+
# Add to displayed images
|
578 |
+
displayed_images.append({
|
579 |
+
'image': img,
|
580 |
+
'product_name': product_name,
|
581 |
+
'price': float(price)
|
582 |
+
})
|
583 |
+
|
584 |
+
except Exception as e:
|
585 |
+
print(f"Error processing item: {str(e)}")
|
586 |
+
continue
|
587 |
+
|
588 |
+
return displayed_images
|
589 |
+
|
590 |
+
def classify_query(query):
|
591 |
+
"""Classify the type of query to determine the retrieval strategy."""
|
592 |
+
query_lower = query.lower()
|
593 |
+
if any(keyword in query_lower for keyword in ['compare', 'difference between']):
|
594 |
+
return 'comparison'
|
595 |
+
elif any(keyword in query_lower for keyword in ['show', 'picture', 'image', 'photo']):
|
596 |
+
return 'image_search'
|
597 |
+
else:
|
598 |
+
return 'product_info'
|
599 |
+
|
600 |
+
def boost_category_relevance(query, product, similarity_score):
|
601 |
+
query_terms = set(query.lower().split())
|
602 |
+
category_terms = set(product['Category'].lower().split())
|
603 |
+
category_overlap = len(query_terms & category_terms)
|
604 |
+
category_boost = 1 + (category_overlap * 0.2) # 20% boost per matching term
|
605 |
+
return similarity_score * category_boost
|
606 |
+
|
607 |
+
def hybrid_retrieval(query, top_k=5):
|
608 |
+
query_type = classify_query(query)
|
609 |
+
|
610 |
+
tokens = clip_tokenizer(query).to(device)
|
611 |
+
with torch.no_grad():
|
612 |
+
text_embedding = clip_model.encode_text(tokens)
|
613 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
614 |
+
text_embedding = text_embedding.cpu().numpy()
|
615 |
+
|
616 |
+
# First get text matches
|
617 |
+
text_results = text_faiss.search(text_embedding[0], k=top_k*2)
|
618 |
+
|
619 |
+
if query_type == 'image_search':
|
620 |
+
image_results = []
|
621 |
+
for item in text_results:
|
622 |
+
# Get original product with embeddings intact
|
623 |
+
product = product_df[product_df['Uniq Id'] == item['id']].iloc[0]
|
624 |
+
# Get image embeddings from embeddings_df instead
|
625 |
+
image_embedding = embeddings_df[embeddings_df['Uniq_Id'] == item['id']]['image_embeddings'].iloc[0]
|
626 |
+
similarity = np.dot(text_embedding.flatten(), image_embedding.flatten())
|
627 |
+
boosted_similarity = boost_category_relevance(query, product, similarity)
|
628 |
+
image_results.append((product, boosted_similarity))
|
629 |
+
|
630 |
+
image_results.sort(key=lambda x: x[1], reverse=True)
|
631 |
+
results = [item for item, _ in image_results[:top_k]]
|
632 |
+
else:
|
633 |
+
results = [product_df[product_df['Uniq Id'] == item['id']].iloc[0] for item in text_results[:top_k]]
|
634 |
+
|
635 |
+
return results, query_type
|
636 |
+
|
637 |
+
|
638 |
+
def fallback_text_search(query, top_k=10):
|
639 |
+
relevant_products = filter_by_metadata(query, metadata)
|
640 |
+
if not relevant_products:
|
641 |
+
# Check brand index specifically
|
642 |
+
if 'brand_index' in metadata:
|
643 |
+
query_terms = query.lower().split()
|
644 |
+
for term in query_terms:
|
645 |
+
if term in metadata['brand_index']:
|
646 |
+
relevant_products = set(metadata['brand_index'][term])
|
647 |
+
break
|
648 |
+
|
649 |
+
if relevant_products:
|
650 |
+
results = [product_df[product_df['Uniq Id'] == pid].iloc[0] for pid in list(relevant_products)[:top_k]]
|
651 |
+
else:
|
652 |
+
query_lower = query.lower()
|
653 |
+
results = product_df[
|
654 |
+
(product_df['Product Name'].str.lower().str.contains(query_lower)) |
|
655 |
+
(product_df['Category'].str.lower().str.contains(query_lower)) |
|
656 |
+
(product_df['Normalized Description'].str.lower().str.contains(query_lower))
|
657 |
+
].head(top_k)
|
658 |
+
|
659 |
+
return results
|
660 |
+
|
661 |
+
def generate_rag_response(query, context, image=None):
|
662 |
+
"""Enhanced RAG response generation"""
|
663 |
+
# Select template based on query type and metadata
|
664 |
+
if "compare" in query.lower() or "difference between" in query.lower() or "vs." in query.lower():
|
665 |
+
template = get_few_shot_product_comparison_template()
|
666 |
+
elif image is not None:
|
667 |
+
template = get_zero_shot_image_template()
|
668 |
+
else:
|
669 |
+
template = get_zero_shot_product_template()
|
670 |
+
|
671 |
+
# Create enhanced prompt with metadata context
|
672 |
+
prompt = PromptTemplate(
|
673 |
+
template=template,
|
674 |
+
input_variables=["query", "context"]
|
675 |
+
)
|
676 |
+
|
677 |
+
# Configure generation parameters
|
678 |
+
pipe = pipeline(
|
679 |
+
"text-generation",
|
680 |
+
model=llm_model,
|
681 |
+
tokenizer=llm_tokenizer,
|
682 |
+
max_new_tokens=300,
|
683 |
+
temperature=0.1,
|
684 |
+
do_sample=False,
|
685 |
+
repetition_penalty=1.2,
|
686 |
+
early_stopping=True,
|
687 |
+
truncation=True,
|
688 |
+
padding=True
|
689 |
+
)
|
690 |
+
|
691 |
+
# Generate and clean response
|
692 |
+
formatted_prompt = prompt.format(query=query, context=context)
|
693 |
+
response = pipe(formatted_prompt)[0]['generated_text']
|
694 |
+
|
695 |
+
# Clean response
|
696 |
+
for section in ["Answer:", "Question:", "Guidelines:", "Context:"]:
|
697 |
+
if section in response:
|
698 |
+
response = response.split(section)[-1].strip()
|
699 |
+
|
700 |
+
return response
|
701 |
+
|
702 |
+
def chatbot(query, image_input=None):
|
703 |
+
"""
|
704 |
+
Main chatbot function to handle queries and provide responses.
|
705 |
+
"""
|
706 |
+
if image_input is not None:
|
707 |
+
try:
|
708 |
+
# Convert URL to image if needed
|
709 |
+
if isinstance(image_input, str):
|
710 |
+
image_input = load_image_from_url(image_input)
|
711 |
+
elif not isinstance(image_input, Image.Image):
|
712 |
+
raise ValueError("Invalid image input type")
|
713 |
+
|
714 |
+
# Get context and generate response
|
715 |
+
context, _ = retrieve_context(query, image_input)
|
716 |
+
if not context:
|
717 |
+
return "No relevant products found for this image."
|
718 |
+
response = generate_rag_response(query, context, image_input)
|
719 |
+
return response
|
720 |
+
|
721 |
+
except Exception as e:
|
722 |
+
print(f"Error processing image: {str(e)}")
|
723 |
+
return f"Failed to process image: {str(e)}"
|
724 |
+
else:
|
725 |
+
try:
|
726 |
+
print(f"Processing query: {query}")
|
727 |
+
if text_faiss is None or image_faiss is None:
|
728 |
+
return "Search indexes not initialized. Please try again."
|
729 |
+
|
730 |
+
results, query_type = hybrid_retrieval(query)
|
731 |
+
print(f"Query type: {query_type}")
|
732 |
+
|
733 |
+
if not results and query_type == 'image_search':
|
734 |
+
print("No relevant images found. Falling back to text search.")
|
735 |
+
results = fallback_text_search(query)
|
736 |
+
|
737 |
+
if not results:
|
738 |
+
return "No relevant products found."
|
739 |
+
|
740 |
+
context = "\n\n".join([enhance_context_with_metadata(item, metadata) for item in results])
|
741 |
+
response = generate_rag_response(query, context)
|
742 |
+
|
743 |
+
if query_type == 'image_search':
|
744 |
+
print("\nFound matching products:")
|
745 |
+
displayed_images = display_product_images(results)
|
746 |
+
|
747 |
+
# Always return a dictionary with both text and images for image search queries
|
748 |
+
return {
|
749 |
+
'text': response,
|
750 |
+
'images': displayed_images
|
751 |
+
}
|
752 |
+
|
753 |
+
return response
|
754 |
+
except Exception as e:
|
755 |
+
print(f"Error processing query: {str(e)}")
|
756 |
+
return f"Error processing request: {str(e)}"
|
757 |
+
|
758 |
+
|
759 |
+
def cleanup_resources():
|
760 |
+
if torch.cuda.is_available():
|
761 |
+
torch.cuda.empty_cache()
|
762 |
+
print("GPU memory cleared")
|
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Amazon E-commerce Visual Assistant
|
2 |
+
|
3 |
+
A multimodal AI assistant that helps users search and explore Amazon products through natural language and image-based interactions.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- Text and image-based product search
|
8 |
+
- Product comparisons and recommendations
|
9 |
+
- Visual product recognition
|
10 |
+
- Detailed product information retrieval
|
11 |
+
- Price analysis and comparison
|
12 |
+
|
13 |
+
## Technologies Used
|
14 |
+
|
15 |
+
- FashionCLIP for visual understanding
|
16 |
+
- Mistral-7B Language Model for text generation
|
17 |
+
- FAISS for efficient similarity search
|
18 |
+
- Streamlit for the user interface
|
19 |
+
|
20 |
+
## Setup and Installation
|
21 |
+
|
22 |
+
1. Clone the repository:
|
23 |
+
```bash
|
24 |
+
git clone https://github.com/wisdom196473/amazon-multimodal-product-assistant.git
|
25 |
+
cd amazon-multimodal-product-assistant
|
26 |
+
```
|
27 |
+
|
28 |
+
2. Install dependencies:
|
29 |
+
```bash
|
30 |
+
pip install -r requirements.txt
|
31 |
+
```
|
32 |
+
|
33 |
+
3. Run the application:
|
34 |
+
```bash
|
35 |
+
streamlit run amazon_app.py
|
36 |
+
```
|
37 |
+
|
38 |
+
## Project Structure
|
39 |
+
|
40 |
+
- `amazon_app.py`: Main Streamlit application
|
41 |
+
- `model.py`: Core AI model implementations
|
42 |
+
- `requirements.txt`: Project dependencies
|
43 |
+
|
44 |
+
## License
|
45 |
+
|
46 |
+
MIT License
|
Vision_AI.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
amazon_app.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
# Configure page
|
4 |
+
st.set_page_config(
|
5 |
+
page_title="E-commerce Visual Assistant",
|
6 |
+
page_icon="🛍️",
|
7 |
+
layout="wide"
|
8 |
+
)
|
9 |
+
|
10 |
+
from streamlit_chat import message
|
11 |
+
import torch
|
12 |
+
from PIL import Image
|
13 |
+
import requests
|
14 |
+
from io import BytesIO
|
15 |
+
from model import initialize_models, load_data, chatbot, cleanup_resources
|
16 |
+
|
17 |
+
# Helper functions
|
18 |
+
def load_image_from_url(url):
|
19 |
+
try:
|
20 |
+
response = requests.get(url)
|
21 |
+
img = Image.open(BytesIO(response.content))
|
22 |
+
return img
|
23 |
+
except Exception as e:
|
24 |
+
st.error(f"Error loading image from URL: {str(e)}")
|
25 |
+
return None
|
26 |
+
|
27 |
+
def initialize_assistant():
|
28 |
+
if not st.session_state.models_loaded:
|
29 |
+
with st.spinner("Loading models and data..."):
|
30 |
+
initialize_models()
|
31 |
+
load_data()
|
32 |
+
st.session_state.models_loaded = True
|
33 |
+
st.success("Assistant is ready!")
|
34 |
+
|
35 |
+
def display_chat_history():
|
36 |
+
for message in st.session_state.messages:
|
37 |
+
with st.chat_message(message["role"]):
|
38 |
+
st.markdown(message["content"])
|
39 |
+
if "image" in message:
|
40 |
+
st.image(message["image"], caption="Uploaded Image", width=200)
|
41 |
+
if "display_images" in message:
|
42 |
+
# Since we only have one image, we don't need multiple columns
|
43 |
+
img_data = message["display_images"][0] # Get the first (and only) image
|
44 |
+
st.image(
|
45 |
+
img_data['image'],
|
46 |
+
caption=f"{img_data['product_name']}\nPrice: ${img_data['price']:.2f}",
|
47 |
+
width=350 # Adjusted width for single image display
|
48 |
+
)
|
49 |
+
|
50 |
+
def handle_user_input(prompt, uploaded_image):
|
51 |
+
# Add user message
|
52 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
53 |
+
|
54 |
+
# Generate response
|
55 |
+
with st.spinner("Processing your request..."):
|
56 |
+
try:
|
57 |
+
response = chatbot(prompt, image_input=uploaded_image)
|
58 |
+
|
59 |
+
if isinstance(response, dict):
|
60 |
+
assistant_message = {
|
61 |
+
"role": "assistant",
|
62 |
+
"content": response['text']
|
63 |
+
}
|
64 |
+
if 'images' in response and response['images']:
|
65 |
+
assistant_message["display_images"] = response['images']
|
66 |
+
st.session_state.messages.append(assistant_message)
|
67 |
+
else:
|
68 |
+
st.session_state.messages.append({
|
69 |
+
"role": "assistant",
|
70 |
+
"content": response
|
71 |
+
})
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
st.error(f"Error: {str(e)}")
|
75 |
+
st.session_state.messages.append({
|
76 |
+
"role": "assistant",
|
77 |
+
"content": f"I encountered an error: {str(e)}"
|
78 |
+
})
|
79 |
+
|
80 |
+
st.rerun()
|
81 |
+
|
82 |
+
# Custom CSS for enhanced styling
|
83 |
+
st.markdown("""
|
84 |
+
<style>
|
85 |
+
/* Main container styling */
|
86 |
+
.main {
|
87 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #e8edf2 100%);
|
88 |
+
padding: 20px;
|
89 |
+
border-radius: 15px;
|
90 |
+
}
|
91 |
+
|
92 |
+
/* Header styling */
|
93 |
+
.stTitle {
|
94 |
+
color: #1e3d59;
|
95 |
+
font-size: 2.5rem !important;
|
96 |
+
text-align: center;
|
97 |
+
padding: 20px;
|
98 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
|
99 |
+
}
|
100 |
+
|
101 |
+
/* Sidebar styling */
|
102 |
+
.css-1d391kg {
|
103 |
+
background: linear-gradient(180deg, #1e3d59 0%, #2b5876 100%);
|
104 |
+
}
|
105 |
+
|
106 |
+
/* Chat container styling */
|
107 |
+
.stChatMessage {
|
108 |
+
background-color: white;
|
109 |
+
border-radius: 15px;
|
110 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
111 |
+
margin: 10px 0;
|
112 |
+
padding: 15px;
|
113 |
+
}
|
114 |
+
|
115 |
+
/* Input box styling */
|
116 |
+
.stTextInput > div > div > input {
|
117 |
+
border-radius: 20px;
|
118 |
+
border: 2px solid #1e3d59;
|
119 |
+
padding: 10px 20px;
|
120 |
+
}
|
121 |
+
|
122 |
+
/* Radio button styling */
|
123 |
+
.stRadio > label {
|
124 |
+
background-color: white;
|
125 |
+
padding: 10px 20px;
|
126 |
+
border-radius: 10px;
|
127 |
+
margin: 5px;
|
128 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
129 |
+
}
|
130 |
+
|
131 |
+
/* Button styling */
|
132 |
+
.stButton > button {
|
133 |
+
background: linear-gradient(90deg, #1e3d59 0%, #2b5876 100%);
|
134 |
+
color: white;
|
135 |
+
border-radius: 20px;
|
136 |
+
padding: 10px 25px;
|
137 |
+
border: none;
|
138 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
139 |
+
transition: all 0.3s ease;
|
140 |
+
}
|
141 |
+
|
142 |
+
.stButton > button:hover {
|
143 |
+
transform: translateY(-2px);
|
144 |
+
box-shadow: 0 6px 8px rgba(0,0,0,0.2);
|
145 |
+
}
|
146 |
+
|
147 |
+
/* Footer styling */
|
148 |
+
footer {
|
149 |
+
background-color: white;
|
150 |
+
border-radius: 10px;
|
151 |
+
padding: 20px;
|
152 |
+
margin-top: 30px;
|
153 |
+
text-align: center;
|
154 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
155 |
+
}
|
156 |
+
</style>
|
157 |
+
""", unsafe_allow_html=True)
|
158 |
+
|
159 |
+
# Initialize session state
|
160 |
+
if 'messages' not in st.session_state:
|
161 |
+
st.session_state.messages = []
|
162 |
+
if 'models_loaded' not in st.session_state:
|
163 |
+
st.session_state.models_loaded = False
|
164 |
+
|
165 |
+
# Main title with enhanced styling
|
166 |
+
st.markdown("<h1 class='stTitle'>🛍️ Amazon E-commerce Visual Assistant</h1>", unsafe_allow_html=True)
|
167 |
+
|
168 |
+
# Sidebar configuration with enhanced styling
|
169 |
+
with st.sidebar:
|
170 |
+
st.title("Assistant Features")
|
171 |
+
|
172 |
+
st.markdown("### 🤖 How It Works")
|
173 |
+
st.markdown("""
|
174 |
+
This AI-powered shopping assistant combines:
|
175 |
+
|
176 |
+
**🧠 Advanced Technologies**
|
177 |
+
- FashionCLIP Visual AI
|
178 |
+
- Mistral-7B Language Model
|
179 |
+
- Multimodal Understanding
|
180 |
+
|
181 |
+
**💫 Capabilities**
|
182 |
+
- Product Search & Recognition
|
183 |
+
- Visual Analysis
|
184 |
+
- Detailed Comparisons
|
185 |
+
- Price Analysis
|
186 |
+
""")
|
187 |
+
|
188 |
+
st.markdown("---")
|
189 |
+
|
190 |
+
st.markdown("### 👥 Development Team")
|
191 |
+
team_members = {
|
192 |
+
"Yu-Chih (Wisdom) Chen",
|
193 |
+
"Feier Xu",
|
194 |
+
"Yanchen Dong",
|
195 |
+
"Kitae Kim"
|
196 |
+
}
|
197 |
+
|
198 |
+
for name in team_members:
|
199 |
+
st.markdown(f"**{name}**")
|
200 |
+
|
201 |
+
st.markdown("---")
|
202 |
+
|
203 |
+
if st.button("🔄 Reset Chat"):
|
204 |
+
st.session_state.messages = []
|
205 |
+
st.rerun()
|
206 |
+
|
207 |
+
# Main chat interface
|
208 |
+
def main():
|
209 |
+
# Initialize assistant
|
210 |
+
initialize_assistant()
|
211 |
+
|
212 |
+
# Chat container
|
213 |
+
chat_container = st.container()
|
214 |
+
|
215 |
+
# User input section at the bottom
|
216 |
+
input_container = st.container()
|
217 |
+
|
218 |
+
with input_container:
|
219 |
+
# Chat input
|
220 |
+
prompt = st.chat_input("What would you like to know?")
|
221 |
+
|
222 |
+
# Input options below chat input
|
223 |
+
col1, col2, col3 = st.columns([1,1,1])
|
224 |
+
with col1:
|
225 |
+
input_option = st.radio(
|
226 |
+
"Input Method:",
|
227 |
+
("Text Only", "Upload Image", "Image URL"),
|
228 |
+
key="input_method"
|
229 |
+
)
|
230 |
+
|
231 |
+
# Handle different input methods
|
232 |
+
uploaded_image = None
|
233 |
+
if input_option == "Upload Image":
|
234 |
+
with col2:
|
235 |
+
uploaded_file = st.file_uploader("Choose image", type=["jpg", "jpeg", "png"])
|
236 |
+
if uploaded_file:
|
237 |
+
uploaded_image = Image.open(uploaded_file)
|
238 |
+
st.image(uploaded_image, caption="Uploaded Image", width=200)
|
239 |
+
|
240 |
+
elif input_option == "Image URL":
|
241 |
+
with col2:
|
242 |
+
image_url = st.text_input("Enter image URL")
|
243 |
+
if image_url:
|
244 |
+
uploaded_image = load_image_from_url(image_url)
|
245 |
+
if uploaded_image:
|
246 |
+
st.image(uploaded_image, caption="Image from URL", width=200)
|
247 |
+
|
248 |
+
# Display chat history
|
249 |
+
with chat_container:
|
250 |
+
display_chat_history()
|
251 |
+
|
252 |
+
# Handle user input and generate response
|
253 |
+
if prompt:
|
254 |
+
handle_user_input(prompt, uploaded_image)
|
255 |
+
|
256 |
+
# Footer
|
257 |
+
st.markdown("""
|
258 |
+
<footer>
|
259 |
+
<h3>💡 Tips for Best Results</h3>
|
260 |
+
<p>Be specific in your questions for more accurate responses!</p>
|
261 |
+
<p>Try asking about product features, comparisons, or prices.</p>
|
262 |
+
</footer>
|
263 |
+
""", unsafe_allow_html=True)
|
264 |
+
|
265 |
+
if __name__ == "__main__":
|
266 |
+
try:
|
267 |
+
main()
|
268 |
+
finally:
|
269 |
+
cleanup_resources()
|
clip_embedding_evaluation_results/evaluation_metrics.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Timestamp,Model,Dataset,Recall@1,Precision@1,Recall@5,Precision@5,NDCG@5,Recall@10,Precision@10,NDCG@10
|
2 |
+
20241205,FashionCLIP-FAISS,Amazon Product Dataset,0.638,0.638,0.851,0.17,0.756,0.901,0.09,0.772
|
model.py
ADDED
@@ -0,0 +1,762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Standard libraries
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from typing import Dict, List, Tuple, Optional
|
8 |
+
import requests
|
9 |
+
from PIL import Image
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from io import BytesIO
|
12 |
+
|
13 |
+
# Deep learning frameworks
|
14 |
+
import torch
|
15 |
+
from torch.cuda.amp import autocast
|
16 |
+
import open_clip
|
17 |
+
|
18 |
+
# Hugging Face
|
19 |
+
from transformers import (
|
20 |
+
AutoTokenizer,
|
21 |
+
AutoModelForCausalLM,
|
22 |
+
BitsAndBytesConfig,
|
23 |
+
pipeline,
|
24 |
+
PreTrainedModel,
|
25 |
+
PreTrainedTokenizer
|
26 |
+
)
|
27 |
+
from huggingface_hub import hf_hub_download
|
28 |
+
from langchain.prompts import PromptTemplate
|
29 |
+
|
30 |
+
# Vector database
|
31 |
+
import faiss
|
32 |
+
|
33 |
+
# Type hints
|
34 |
+
from typing import Dict, List, Tuple, Optional, Union
|
35 |
+
|
36 |
+
# Global variables
|
37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
clip_model: Optional[PreTrainedModel] = None
|
39 |
+
clip_preprocess: Optional[callable] = None
|
40 |
+
clip_tokenizer: Optional[PreTrainedTokenizer] = None
|
41 |
+
llm_tokenizer: Optional[PreTrainedTokenizer] = None
|
42 |
+
llm_model: Optional[PreTrainedModel] = None
|
43 |
+
product_df: Optional[pd.DataFrame] = None
|
44 |
+
metadata: Dict = {}
|
45 |
+
embeddings_df: Optional[pd.DataFrame] = None
|
46 |
+
text_faiss: Optional[object] = None
|
47 |
+
image_faiss: Optional[object] = None
|
48 |
+
|
49 |
+
def initialize_models() -> bool:
|
50 |
+
"""
|
51 |
+
Initialize CLIP and LLM models with proper error handling and GPU optimization.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
bool: True if initialization successful, raises RuntimeError otherwise
|
55 |
+
"""
|
56 |
+
global clip_model, clip_preprocess, clip_tokenizer, llm_tokenizer, llm_model, device
|
57 |
+
|
58 |
+
try:
|
59 |
+
print(f"Initializing models on device: {device}")
|
60 |
+
|
61 |
+
# Initialize CLIP model with error handling
|
62 |
+
try:
|
63 |
+
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
64 |
+
'hf-hub:Marqo/marqo-fashionCLIP'
|
65 |
+
)
|
66 |
+
clip_model = clip_model.to(device)
|
67 |
+
clip_model.eval()
|
68 |
+
clip_tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
|
69 |
+
print("CLIP model initialized successfully")
|
70 |
+
except Exception as e:
|
71 |
+
raise RuntimeError(f"Failed to initialize CLIP model: {str(e)}")
|
72 |
+
|
73 |
+
# Initialize LLM with optimized settings
|
74 |
+
try:
|
75 |
+
model_name = "mistralai/Mistral-7B-v0.1"
|
76 |
+
quantization_config = BitsAndBytesConfig(
|
77 |
+
load_in_4bit=True,
|
78 |
+
bnb_4bit_compute_dtype=torch.float16,
|
79 |
+
bnb_4bit_use_double_quant=True,
|
80 |
+
bnb_4bit_quant_type="nf4"
|
81 |
+
)
|
82 |
+
|
83 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(
|
84 |
+
model_name,
|
85 |
+
padding_side="left",
|
86 |
+
truncation_side="left"
|
87 |
+
)
|
88 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
89 |
+
|
90 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
91 |
+
model_name,
|
92 |
+
quantization_config=quantization_config,
|
93 |
+
device_map="auto",
|
94 |
+
torch_dtype=torch.float16
|
95 |
+
)
|
96 |
+
llm_model.eval()
|
97 |
+
print("LLM initialized successfully")
|
98 |
+
except Exception as e:
|
99 |
+
raise RuntimeError(f"Failed to initialize LLM: {str(e)}")
|
100 |
+
|
101 |
+
return True
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
105 |
+
|
106 |
+
# Data loading
|
107 |
+
def load_data() -> bool:
|
108 |
+
"""
|
109 |
+
Load and initialize all required data with enhanced metadata support and error handling.
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
bool: True if data loading successful, raises RuntimeError otherwise
|
113 |
+
"""
|
114 |
+
global product_df, metadata, embeddings_df, text_faiss, image_faiss
|
115 |
+
|
116 |
+
try:
|
117 |
+
print("Loading product data...")
|
118 |
+
# Load cleaned product data
|
119 |
+
try:
|
120 |
+
cleaned_data_path = hf_hub_download(
|
121 |
+
repo_id="chen196473/amazon_product_2020_cleaned",
|
122 |
+
filename="amazon_cleaned.parquet",
|
123 |
+
repo_type="dataset"
|
124 |
+
)
|
125 |
+
product_df = pd.read_parquet(cleaned_data_path)
|
126 |
+
|
127 |
+
# Add validation columns
|
128 |
+
product_df['Has_Valid_Image'] = product_df['Processed Image'].notna()
|
129 |
+
product_df['Image_Status'] = product_df['Has_Valid_Image'].map({
|
130 |
+
True: 'valid',
|
131 |
+
False: 'invalid'
|
132 |
+
})
|
133 |
+
print("Product data loaded successfully")
|
134 |
+
except Exception as e:
|
135 |
+
raise RuntimeError(f"Failed to load product data: {str(e)}")
|
136 |
+
|
137 |
+
# Load enhanced metadata
|
138 |
+
print("Loading metadata...")
|
139 |
+
try:
|
140 |
+
metadata = {}
|
141 |
+
metadata_files = [
|
142 |
+
'base_metadata.json',
|
143 |
+
'category_index.json',
|
144 |
+
'price_range_index.json',
|
145 |
+
'keyword_index.json',
|
146 |
+
'brand_index.json',
|
147 |
+
'product_name_index.json'
|
148 |
+
]
|
149 |
+
|
150 |
+
for file in metadata_files:
|
151 |
+
file_path = hf_hub_download(
|
152 |
+
repo_id="chen196473/amazon_product_2020_metadata",
|
153 |
+
filename=file,
|
154 |
+
repo_type="dataset"
|
155 |
+
)
|
156 |
+
with open(file_path, 'r') as f:
|
157 |
+
index_name = file.replace('.json', '')
|
158 |
+
data = json.load(f)
|
159 |
+
|
160 |
+
if index_name == 'base_metadata':
|
161 |
+
data = {item['Uniq_Id']: item for item in data}
|
162 |
+
for item in data.values():
|
163 |
+
if 'Keywords' in item:
|
164 |
+
item['Keywords'] = set(item['Keywords'])
|
165 |
+
|
166 |
+
metadata[index_name] = data
|
167 |
+
print("Metadata loaded successfully")
|
168 |
+
except Exception as e:
|
169 |
+
raise RuntimeError(f"Failed to load metadata: {str(e)}")
|
170 |
+
|
171 |
+
# Load embeddings
|
172 |
+
print("Loading embeddings...")
|
173 |
+
try:
|
174 |
+
text_embeddings_dict, image_embeddings_dict = load_embeddings_from_huggingface(
|
175 |
+
"chen196473/amazon_vector_database"
|
176 |
+
)
|
177 |
+
|
178 |
+
# Create embeddings DataFrame
|
179 |
+
embeddings_df = pd.DataFrame({
|
180 |
+
'text_embeddings': list(text_embeddings_dict.values()),
|
181 |
+
'image_embeddings': list(image_embeddings_dict.values()),
|
182 |
+
'Uniq_Id': list(text_embeddings_dict.keys())
|
183 |
+
})
|
184 |
+
|
185 |
+
# Merge with product data
|
186 |
+
product_df = product_df.merge(
|
187 |
+
embeddings_df,
|
188 |
+
left_on='Uniq Id',
|
189 |
+
right_on='Uniq_Id',
|
190 |
+
how='inner'
|
191 |
+
)
|
192 |
+
print("Embeddings loaded and merged successfully")
|
193 |
+
|
194 |
+
# Create FAISS indexes
|
195 |
+
print("Creating FAISS indexes...")
|
196 |
+
try:
|
197 |
+
create_faiss_indexes(text_embeddings_dict, image_embeddings_dict)
|
198 |
+
print("FAISS indexes created successfully")
|
199 |
+
|
200 |
+
# Verify FAISS indexes are properly initialized and contain data
|
201 |
+
if text_faiss is None or image_faiss is None:
|
202 |
+
raise RuntimeError("FAISS indexes were not properly initialized")
|
203 |
+
|
204 |
+
# Test a simple query to verify indexes are working
|
205 |
+
test_query = "test"
|
206 |
+
tokens = clip_tokenizer(test_query).to(device)
|
207 |
+
with torch.no_grad():
|
208 |
+
text_embedding = clip_model.encode_text(tokens)
|
209 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
210 |
+
text_embedding = text_embedding.cpu().numpy()
|
211 |
+
|
212 |
+
# Verify search works
|
213 |
+
test_results = text_faiss.search(text_embedding[0], k=1)
|
214 |
+
if not test_results:
|
215 |
+
raise RuntimeError("FAISS indexes are empty")
|
216 |
+
|
217 |
+
print("FAISS indexes verified successfully")
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
raise RuntimeError(f"Failed to create or verify FAISS indexes: {str(e)}")
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
raise RuntimeError(f"Failed to load embeddings: {str(e)}")
|
224 |
+
|
225 |
+
# Validate required columns
|
226 |
+
required_columns = [
|
227 |
+
'Uniq Id', 'Product Name', 'Category', 'Selling Price',
|
228 |
+
'Model Number', 'Image', 'Normalized Description'
|
229 |
+
]
|
230 |
+
missing_cols = set(required_columns) - set(product_df.columns)
|
231 |
+
if missing_cols:
|
232 |
+
raise ValueError(f"Missing required columns: {missing_cols}")
|
233 |
+
|
234 |
+
# Add enhanced metadata fields
|
235 |
+
if 'Search_Text' not in product_df.columns:
|
236 |
+
product_df['Search_Text'] = product_df.apply(
|
237 |
+
lambda x: metadata['base_metadata'].get(x['Uniq Id'], {}).get('Search_Text', ''),
|
238 |
+
axis=1
|
239 |
+
)
|
240 |
+
|
241 |
+
# Final verification of loaded data
|
242 |
+
if product_df is None or product_df.empty:
|
243 |
+
raise RuntimeError("Product DataFrame is empty or not initialized")
|
244 |
+
|
245 |
+
if not metadata:
|
246 |
+
raise RuntimeError("Metadata dictionary is empty")
|
247 |
+
|
248 |
+
if embeddings_df is None or embeddings_df.empty:
|
249 |
+
raise RuntimeError("Embeddings DataFrame is empty or not initialized")
|
250 |
+
|
251 |
+
print("Data loading completed successfully")
|
252 |
+
return True
|
253 |
+
|
254 |
+
except Exception as e:
|
255 |
+
# Clean up any partially loaded data
|
256 |
+
product_df = None
|
257 |
+
metadata = {}
|
258 |
+
embeddings_df = None
|
259 |
+
text_faiss = None
|
260 |
+
image_faiss = None
|
261 |
+
raise RuntimeError(f"Data loading failed: {str(e)}")
|
262 |
+
|
263 |
+
def load_embeddings_from_huggingface(repo_id: str) -> Tuple[Dict, Dict]:
|
264 |
+
"""
|
265 |
+
Load embeddings from Hugging Face repository with enhanced error handling.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
repo_id (str): Hugging Face repository ID
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
Tuple[Dict, Dict]: Dictionaries containing text and image embeddings
|
272 |
+
"""
|
273 |
+
print("Loading embeddings from Hugging Face...")
|
274 |
+
try:
|
275 |
+
file_path = hf_hub_download(
|
276 |
+
repo_id=repo_id,
|
277 |
+
filename="embeddings.parquet",
|
278 |
+
repo_type="dataset"
|
279 |
+
)
|
280 |
+
df = pd.read_parquet(file_path)
|
281 |
+
|
282 |
+
# Extract embedding columns
|
283 |
+
text_cols = [col for col in df.columns if col.startswith('text_embedding_')]
|
284 |
+
image_cols = [col for col in df.columns if col.startswith('image_embedding_')]
|
285 |
+
|
286 |
+
# Create embedding dictionaries
|
287 |
+
text_embeddings_dict = {
|
288 |
+
row['Uniq_Id']: row[text_cols].values.astype(np.float32)
|
289 |
+
for _, row in df.iterrows()
|
290 |
+
}
|
291 |
+
image_embeddings_dict = {
|
292 |
+
row['Uniq_Id']: row[image_cols].values.astype(np.float32)
|
293 |
+
for _, row in df.iterrows()
|
294 |
+
}
|
295 |
+
|
296 |
+
print(f"Successfully loaded {len(text_embeddings_dict)} embeddings")
|
297 |
+
return text_embeddings_dict, image_embeddings_dict
|
298 |
+
|
299 |
+
except Exception as e:
|
300 |
+
raise RuntimeError(f"Failed to load embeddings from Hugging Face: {str(e)}")
|
301 |
+
|
302 |
+
# FAISS index creation
|
303 |
+
class MultiModalFAISSIndex:
|
304 |
+
def __init__(self, dimension, index_type='L2'):
|
305 |
+
import faiss
|
306 |
+
self.dimension = dimension
|
307 |
+
self.index = faiss.IndexFlatL2(dimension) if index_type == 'L2' else faiss.IndexFlatIP(dimension)
|
308 |
+
self.id_to_metadata = {}
|
309 |
+
|
310 |
+
def add_embeddings(self, embeddings, metadata_list):
|
311 |
+
import numpy as np
|
312 |
+
embeddings = np.array(embeddings).astype('float32')
|
313 |
+
self.index.add(embeddings)
|
314 |
+
for i, metadata in enumerate(metadata_list):
|
315 |
+
self.id_to_metadata[i] = metadata
|
316 |
+
|
317 |
+
def search(self, query_embedding, k=5):
|
318 |
+
import numpy as np
|
319 |
+
query_embedding = np.array([query_embedding]).astype('float32')
|
320 |
+
distances, indices = self.index.search(query_embedding, k)
|
321 |
+
results = []
|
322 |
+
for idx in indices[0]:
|
323 |
+
if idx in self.id_to_metadata:
|
324 |
+
results.append(self.id_to_metadata[idx])
|
325 |
+
return results
|
326 |
+
|
327 |
+
def create_faiss_indexes(text_embeddings_dict, image_embeddings_dict):
|
328 |
+
"""Create FAISS indexes with error handling"""
|
329 |
+
global text_faiss, image_faiss
|
330 |
+
|
331 |
+
try:
|
332 |
+
# Get embedding dimension
|
333 |
+
text_dim = next(iter(text_embeddings_dict.values())).shape[0]
|
334 |
+
image_dim = next(iter(image_embeddings_dict.values())).shape[0]
|
335 |
+
|
336 |
+
# Create indexes
|
337 |
+
text_faiss = MultiModalFAISSIndex(text_dim)
|
338 |
+
image_faiss = MultiModalFAISSIndex(image_dim)
|
339 |
+
|
340 |
+
# Prepare text embeddings and metadata
|
341 |
+
text_embeddings = []
|
342 |
+
text_metadata = []
|
343 |
+
for text_id, embedding in text_embeddings_dict.items():
|
344 |
+
if text_id in product_df['Uniq Id'].values:
|
345 |
+
product = product_df[product_df['Uniq Id'] == text_id].iloc[0]
|
346 |
+
text_embeddings.append(embedding)
|
347 |
+
text_metadata.append({
|
348 |
+
'id': text_id,
|
349 |
+
'description': product['Normalized Description'],
|
350 |
+
'product_name': product['Product Name']
|
351 |
+
})
|
352 |
+
|
353 |
+
# Add text embeddings
|
354 |
+
if text_embeddings:
|
355 |
+
text_faiss.add_embeddings(text_embeddings, text_metadata)
|
356 |
+
|
357 |
+
# Prepare image embeddings and metadata
|
358 |
+
image_embeddings = []
|
359 |
+
image_metadata = []
|
360 |
+
for image_id, embedding in image_embeddings_dict.items():
|
361 |
+
if image_id in product_df['Uniq Id'].values:
|
362 |
+
product = product_df[product_df['Uniq Id'] == image_id].iloc[0]
|
363 |
+
image_embeddings.append(embedding)
|
364 |
+
image_metadata.append({
|
365 |
+
'id': image_id,
|
366 |
+
'image_url': product['Image'],
|
367 |
+
'product_name': product['Product Name']
|
368 |
+
})
|
369 |
+
|
370 |
+
# Add image embeddings
|
371 |
+
if image_embeddings:
|
372 |
+
image_faiss.add_embeddings(image_embeddings, image_metadata)
|
373 |
+
|
374 |
+
return True
|
375 |
+
|
376 |
+
except Exception as e:
|
377 |
+
raise RuntimeError(f"Failed to create FAISS indexes: {str(e)}")
|
378 |
+
|
379 |
+
def get_few_shot_product_comparison_template():
|
380 |
+
return """Compare these specific products based on their actual features and specifications:
|
381 |
+
|
382 |
+
Example 1:
|
383 |
+
Question: Compare iPhone 13 and Samsung Galaxy S21
|
384 |
+
Answer: The iPhone 13 features a 6.1-inch Super Retina XDR display and dual 12MP cameras, while the Galaxy S21 has a 6.2-inch Dynamic AMOLED display and triple camera setup. Both phones offer 5G connectivity, but the iPhone uses A15 Bionic chip while S21 uses Snapdragon 888.
|
385 |
+
|
386 |
+
Example 2:
|
387 |
+
Question: Compare Amazon Echo Dot and Google Nest Mini
|
388 |
+
Answer: The Amazon Echo Dot features Alexa voice assistant and a 1.6-inch speaker, while the Google Nest Mini comes with Google Assistant and a 40mm driver. Both devices offer smart home control and music playback, but differ in their ecosystem integration.
|
389 |
+
|
390 |
+
Current Question: {query}
|
391 |
+
Context: {context}
|
392 |
+
|
393 |
+
Guidelines:
|
394 |
+
- Only compare the specific products mentioned in the query
|
395 |
+
- Focus on actual product features and specifications
|
396 |
+
- Keep response to 2-3 clear sentences
|
397 |
+
- Ensure factual accuracy based on the context provided
|
398 |
+
|
399 |
+
Answer:"""
|
400 |
+
|
401 |
+
def get_zero_shot_product_template():
|
402 |
+
return """You are a product information specialist. Describe only the specific product's actual features based on the provided context.
|
403 |
+
|
404 |
+
Context: {context}
|
405 |
+
|
406 |
+
Question: {query}
|
407 |
+
|
408 |
+
Guidelines:
|
409 |
+
- Only describe the specific product mentioned in the query
|
410 |
+
- Focus on actual features and specifications from the context
|
411 |
+
- Keep response to 2-3 factual sentences
|
412 |
+
- Ensure information accuracy
|
413 |
+
|
414 |
+
Answer:"""
|
415 |
+
|
416 |
+
def get_zero_shot_image_template():
|
417 |
+
return """Analyze this product image and provide a concise description:
|
418 |
+
|
419 |
+
Product Information:
|
420 |
+
{context}
|
421 |
+
|
422 |
+
Guidelines:
|
423 |
+
- Describe the main product features and intended use
|
424 |
+
- Highlight key specifications and materials
|
425 |
+
- Keep response to 2-3 sentences
|
426 |
+
- Focus on practical information
|
427 |
+
|
428 |
+
Answer:"""
|
429 |
+
|
430 |
+
# Image processing functions
|
431 |
+
def process_image(image):
|
432 |
+
try:
|
433 |
+
if isinstance(image, str):
|
434 |
+
response = requests.get(image)
|
435 |
+
image = Image.open(io.BytesIO(response.content))
|
436 |
+
|
437 |
+
processed_image = clip_preprocess(image).unsqueeze(0).to(device)
|
438 |
+
|
439 |
+
with torch.no_grad():
|
440 |
+
image_features = clip_model.encode_image(processed_image)
|
441 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
442 |
+
|
443 |
+
return image_features.cpu().numpy()
|
444 |
+
except Exception as e:
|
445 |
+
raise Exception(f"Error processing image: {str(e)}")
|
446 |
+
|
447 |
+
def load_image_from_url(url):
|
448 |
+
response = requests.get(url)
|
449 |
+
if response.status_code == 200:
|
450 |
+
return Image.open(io.BytesIO(response.content))
|
451 |
+
else:
|
452 |
+
raise Exception(f"Failed to fetch image from URL: {url}, Status Code: {response.status_code}")
|
453 |
+
|
454 |
+
# Context retrieval and enhancement
|
455 |
+
def filter_by_metadata(query, metadata_index):
|
456 |
+
relevant_products = set()
|
457 |
+
|
458 |
+
# Check category index
|
459 |
+
if 'category_index' in metadata_index:
|
460 |
+
categories = metadata_index['category_index']
|
461 |
+
for category in categories:
|
462 |
+
if any(term.lower() in category.lower() for term in query.split()):
|
463 |
+
relevant_products.update(categories[category])
|
464 |
+
|
465 |
+
# Check product name index
|
466 |
+
if 'product_name_index' in metadata_index:
|
467 |
+
product_names = metadata_index['product_name_index']
|
468 |
+
for term in query.split():
|
469 |
+
if term.lower() in product_names:
|
470 |
+
relevant_products.update(product_names[term.lower()])
|
471 |
+
|
472 |
+
# Check price ranges
|
473 |
+
price_terms = {'cheap', 'expensive', 'price', 'cost', 'affordable'}
|
474 |
+
if any(term in query.lower() for term in price_terms) and 'price_range_index' in metadata_index:
|
475 |
+
price_ranges = metadata_index['price_range_index']
|
476 |
+
for price_range in price_ranges:
|
477 |
+
relevant_products.update(price_ranges[price_range])
|
478 |
+
|
479 |
+
return relevant_products if relevant_products else None
|
480 |
+
|
481 |
+
def enhance_context_with_metadata(product, metadata_index):
|
482 |
+
"""Enhanced context building using new metadata structure"""
|
483 |
+
# Access base_metadata using product ID directly since it's now a dictionary
|
484 |
+
base_metadata = metadata_index['base_metadata'].get(product['Uniq Id'])
|
485 |
+
|
486 |
+
if base_metadata:
|
487 |
+
# Get keywords and search text from enhanced metadata
|
488 |
+
keywords = base_metadata.get('Keywords', [])
|
489 |
+
search_text = base_metadata.get('Search_Text', '')
|
490 |
+
|
491 |
+
# Build enhanced description
|
492 |
+
description = []
|
493 |
+
description.append(f"Product Name: {base_metadata['Product_Name']}")
|
494 |
+
description.append(f"Category: {base_metadata['Category']}")
|
495 |
+
description.append(f"Price: ${base_metadata['Selling_Price']:.2f}")
|
496 |
+
|
497 |
+
# Add key features from normalized description
|
498 |
+
if 'Normalized_Description' in base_metadata:
|
499 |
+
features = []
|
500 |
+
for feature in base_metadata['Normalized_Description'].split('|'):
|
501 |
+
if ':' in feature:
|
502 |
+
key, value = feature.split(':', 1)
|
503 |
+
if not any(skip in key.lower() for skip in
|
504 |
+
['uniq id', 'product url', 'specifications', 'asin']):
|
505 |
+
features.append(f"{key.strip()}: {value.strip()}")
|
506 |
+
if features:
|
507 |
+
description.append("Key Features:")
|
508 |
+
description.extend(features[:3])
|
509 |
+
|
510 |
+
# Add relevant keywords
|
511 |
+
if keywords:
|
512 |
+
description.append("Related Terms: " + ", ".join(list(keywords)[:5]))
|
513 |
+
|
514 |
+
return "\n".join(description)
|
515 |
+
|
516 |
+
return None
|
517 |
+
|
518 |
+
def retrieve_context(query, image=None, top_k=5):
|
519 |
+
"""Enhanced context retrieval using both FAISS and metadata"""
|
520 |
+
# Initialize context lists
|
521 |
+
similar_items = []
|
522 |
+
context = []
|
523 |
+
|
524 |
+
if image is not None:
|
525 |
+
# Process image query
|
526 |
+
image_embedding = process_image(image)
|
527 |
+
image_embedding = image_embedding.reshape(1, -1)
|
528 |
+
similar_items = image_faiss.search(image_embedding[0], k=top_k)
|
529 |
+
else:
|
530 |
+
# Process text query with enhanced metadata filtering
|
531 |
+
relevant_products = filter_by_metadata(query, metadata)
|
532 |
+
|
533 |
+
tokens = clip_tokenizer(query).to(device)
|
534 |
+
with torch.no_grad():
|
535 |
+
text_embedding = clip_model.encode_text(tokens)
|
536 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
537 |
+
text_embedding = text_embedding.cpu().numpy()
|
538 |
+
|
539 |
+
# Get FAISS results
|
540 |
+
similar_items = text_faiss.search(text_embedding[0], k=top_k*2) # Get more results for filtering
|
541 |
+
|
542 |
+
# Filter results using metadata if available
|
543 |
+
if relevant_products:
|
544 |
+
similar_items = [item for item in similar_items if item['id'] in relevant_products][:top_k]
|
545 |
+
|
546 |
+
# Build enhanced context
|
547 |
+
for item in similar_items:
|
548 |
+
product = product_df[product_df['Uniq Id'] == item['id']].iloc[0]
|
549 |
+
enhanced_context = enhance_context_with_metadata(product, metadata)
|
550 |
+
if enhanced_context:
|
551 |
+
context.append(enhanced_context)
|
552 |
+
|
553 |
+
return "\n\n".join(context), similar_items
|
554 |
+
|
555 |
+
def display_product_images(similar_items, max_images=1):
|
556 |
+
displayed_images = []
|
557 |
+
|
558 |
+
for item in similar_items[:max_images]:
|
559 |
+
try:
|
560 |
+
# Get image URL from product data
|
561 |
+
image_url = item['Image'] if isinstance(item, pd.Series) else item.get('Image')
|
562 |
+
if not image_url:
|
563 |
+
continue
|
564 |
+
|
565 |
+
# Handle multiple image URLs
|
566 |
+
image_urls = image_url.split('|')
|
567 |
+
image_url = image_urls[0] # Take first image
|
568 |
+
|
569 |
+
# Load image
|
570 |
+
response = requests.get(image_url)
|
571 |
+
img = Image.open(BytesIO(response.content))
|
572 |
+
|
573 |
+
# Get product details
|
574 |
+
product_name = item['Product Name'] if isinstance(item, pd.Series) else item.get('product_name')
|
575 |
+
price = item['Selling Price'] if isinstance(item, pd.Series) else item.get('price', 0)
|
576 |
+
|
577 |
+
# Add to displayed images
|
578 |
+
displayed_images.append({
|
579 |
+
'image': img,
|
580 |
+
'product_name': product_name,
|
581 |
+
'price': float(price)
|
582 |
+
})
|
583 |
+
|
584 |
+
except Exception as e:
|
585 |
+
print(f"Error processing item: {str(e)}")
|
586 |
+
continue
|
587 |
+
|
588 |
+
return displayed_images
|
589 |
+
|
590 |
+
def classify_query(query):
|
591 |
+
"""Classify the type of query to determine the retrieval strategy."""
|
592 |
+
query_lower = query.lower()
|
593 |
+
if any(keyword in query_lower for keyword in ['compare', 'difference between']):
|
594 |
+
return 'comparison'
|
595 |
+
elif any(keyword in query_lower for keyword in ['show', 'picture', 'image', 'photo']):
|
596 |
+
return 'image_search'
|
597 |
+
else:
|
598 |
+
return 'product_info'
|
599 |
+
|
600 |
+
def boost_category_relevance(query, product, similarity_score):
|
601 |
+
query_terms = set(query.lower().split())
|
602 |
+
category_terms = set(product['Category'].lower().split())
|
603 |
+
category_overlap = len(query_terms & category_terms)
|
604 |
+
category_boost = 1 + (category_overlap * 0.2) # 20% boost per matching term
|
605 |
+
return similarity_score * category_boost
|
606 |
+
|
607 |
+
def hybrid_retrieval(query, top_k=5):
|
608 |
+
query_type = classify_query(query)
|
609 |
+
|
610 |
+
tokens = clip_tokenizer(query).to(device)
|
611 |
+
with torch.no_grad():
|
612 |
+
text_embedding = clip_model.encode_text(tokens)
|
613 |
+
text_embedding = text_embedding / text_embedding.norm(dim=-1, keepdim=True)
|
614 |
+
text_embedding = text_embedding.cpu().numpy()
|
615 |
+
|
616 |
+
# First get text matches
|
617 |
+
text_results = text_faiss.search(text_embedding[0], k=top_k*2)
|
618 |
+
|
619 |
+
if query_type == 'image_search':
|
620 |
+
image_results = []
|
621 |
+
for item in text_results:
|
622 |
+
# Get original product with embeddings intact
|
623 |
+
product = product_df[product_df['Uniq Id'] == item['id']].iloc[0]
|
624 |
+
# Get image embeddings from embeddings_df instead
|
625 |
+
image_embedding = embeddings_df[embeddings_df['Uniq_Id'] == item['id']]['image_embeddings'].iloc[0]
|
626 |
+
similarity = np.dot(text_embedding.flatten(), image_embedding.flatten())
|
627 |
+
boosted_similarity = boost_category_relevance(query, product, similarity)
|
628 |
+
image_results.append((product, boosted_similarity))
|
629 |
+
|
630 |
+
image_results.sort(key=lambda x: x[1], reverse=True)
|
631 |
+
results = [item for item, _ in image_results[:top_k]]
|
632 |
+
else:
|
633 |
+
results = [product_df[product_df['Uniq Id'] == item['id']].iloc[0] for item in text_results[:top_k]]
|
634 |
+
|
635 |
+
return results, query_type
|
636 |
+
|
637 |
+
|
638 |
+
def fallback_text_search(query, top_k=10):
|
639 |
+
relevant_products = filter_by_metadata(query, metadata)
|
640 |
+
if not relevant_products:
|
641 |
+
# Check brand index specifically
|
642 |
+
if 'brand_index' in metadata:
|
643 |
+
query_terms = query.lower().split()
|
644 |
+
for term in query_terms:
|
645 |
+
if term in metadata['brand_index']:
|
646 |
+
relevant_products = set(metadata['brand_index'][term])
|
647 |
+
break
|
648 |
+
|
649 |
+
if relevant_products:
|
650 |
+
results = [product_df[product_df['Uniq Id'] == pid].iloc[0] for pid in list(relevant_products)[:top_k]]
|
651 |
+
else:
|
652 |
+
query_lower = query.lower()
|
653 |
+
results = product_df[
|
654 |
+
(product_df['Product Name'].str.lower().str.contains(query_lower)) |
|
655 |
+
(product_df['Category'].str.lower().str.contains(query_lower)) |
|
656 |
+
(product_df['Normalized Description'].str.lower().str.contains(query_lower))
|
657 |
+
].head(top_k)
|
658 |
+
|
659 |
+
return results
|
660 |
+
|
661 |
+
def generate_rag_response(query, context, image=None):
|
662 |
+
"""Enhanced RAG response generation"""
|
663 |
+
# Select template based on query type and metadata
|
664 |
+
if "compare" in query.lower() or "difference between" in query.lower() or "vs." in query.lower():
|
665 |
+
template = get_few_shot_product_comparison_template()
|
666 |
+
elif image is not None:
|
667 |
+
template = get_zero_shot_image_template()
|
668 |
+
else:
|
669 |
+
template = get_zero_shot_product_template()
|
670 |
+
|
671 |
+
# Create enhanced prompt with metadata context
|
672 |
+
prompt = PromptTemplate(
|
673 |
+
template=template,
|
674 |
+
input_variables=["query", "context"]
|
675 |
+
)
|
676 |
+
|
677 |
+
# Configure generation parameters
|
678 |
+
pipe = pipeline(
|
679 |
+
"text-generation",
|
680 |
+
model=llm_model,
|
681 |
+
tokenizer=llm_tokenizer,
|
682 |
+
max_new_tokens=300,
|
683 |
+
temperature=0.1,
|
684 |
+
do_sample=False,
|
685 |
+
repetition_penalty=1.2,
|
686 |
+
early_stopping=True,
|
687 |
+
truncation=True,
|
688 |
+
padding=True
|
689 |
+
)
|
690 |
+
|
691 |
+
# Generate and clean response
|
692 |
+
formatted_prompt = prompt.format(query=query, context=context)
|
693 |
+
response = pipe(formatted_prompt)[0]['generated_text']
|
694 |
+
|
695 |
+
# Clean response
|
696 |
+
for section in ["Answer:", "Question:", "Guidelines:", "Context:"]:
|
697 |
+
if section in response:
|
698 |
+
response = response.split(section)[-1].strip()
|
699 |
+
|
700 |
+
return response
|
701 |
+
|
702 |
+
def chatbot(query, image_input=None):
|
703 |
+
"""
|
704 |
+
Main chatbot function to handle queries and provide responses.
|
705 |
+
"""
|
706 |
+
if image_input is not None:
|
707 |
+
try:
|
708 |
+
# Convert URL to image if needed
|
709 |
+
if isinstance(image_input, str):
|
710 |
+
image_input = load_image_from_url(image_input)
|
711 |
+
elif not isinstance(image_input, Image.Image):
|
712 |
+
raise ValueError("Invalid image input type")
|
713 |
+
|
714 |
+
# Get context and generate response
|
715 |
+
context, _ = retrieve_context(query, image_input)
|
716 |
+
if not context:
|
717 |
+
return "No relevant products found for this image."
|
718 |
+
response = generate_rag_response(query, context, image_input)
|
719 |
+
return response
|
720 |
+
|
721 |
+
except Exception as e:
|
722 |
+
print(f"Error processing image: {str(e)}")
|
723 |
+
return f"Failed to process image: {str(e)}"
|
724 |
+
else:
|
725 |
+
try:
|
726 |
+
print(f"Processing query: {query}")
|
727 |
+
if text_faiss is None or image_faiss is None:
|
728 |
+
return "Search indexes not initialized. Please try again."
|
729 |
+
|
730 |
+
results, query_type = hybrid_retrieval(query)
|
731 |
+
print(f"Query type: {query_type}")
|
732 |
+
|
733 |
+
if not results and query_type == 'image_search':
|
734 |
+
print("No relevant images found. Falling back to text search.")
|
735 |
+
results = fallback_text_search(query)
|
736 |
+
|
737 |
+
if not results:
|
738 |
+
return "No relevant products found."
|
739 |
+
|
740 |
+
context = "\n\n".join([enhance_context_with_metadata(item, metadata) for item in results])
|
741 |
+
response = generate_rag_response(query, context)
|
742 |
+
|
743 |
+
if query_type == 'image_search':
|
744 |
+
print("\nFound matching products:")
|
745 |
+
displayed_images = display_product_images(results)
|
746 |
+
|
747 |
+
# Always return a dictionary with both text and images for image search queries
|
748 |
+
return {
|
749 |
+
'text': response,
|
750 |
+
'images': displayed_images
|
751 |
+
}
|
752 |
+
|
753 |
+
return response
|
754 |
+
except Exception as e:
|
755 |
+
print(f"Error processing query: {str(e)}")
|
756 |
+
return f"Error processing request: {str(e)}"
|
757 |
+
|
758 |
+
|
759 |
+
def cleanup_resources():
|
760 |
+
if torch.cuda.is_available():
|
761 |
+
torch.cuda.empty_cache()
|
762 |
+
print("GPU memory cleared")
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.28.2
|
2 |
+
streamlit-chat==0.1.1
|
3 |
+
torch==2.1.1
|
4 |
+
transformers==4.35.2
|
5 |
+
open_clip_torch==2.23.0
|
6 |
+
pillow==10.1.0
|
7 |
+
pandas==2.1.3
|
8 |
+
numpy==1.26.2
|
9 |
+
faiss-cpu==1.7.4
|
10 |
+
huggingface_hub==0.19.4
|
11 |
+
langchain==0.0.339
|
12 |
+
requests==2.31.0
|
13 |
+
pyngrok==7.0.3
|
14 |
+
bitsandbytes==0.41.1
|