File size: 13,100 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from lavis.datasets.builders import load_dataset
import torch
import more_itertools
from tqdm import tqdm
from coco_metric import compute_cider, postprocess_captioning_generation
import json
import time
import os
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor


class VisualLogitsProcessor(LogitsProcessor):
    def __init__(self, tokenizer):
        super().__init__()
        self.tokenizer = tokenizer
        self.object_token_id = self.tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
        self.prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
        self.box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
        self.previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
        self.visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
        self.eos_token_id = self.tokenizer.encode(self.tokenizer.eos_token)[-1]
        self.endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
        self.topk = 2

    def __call__(self, input_ids, scores):
        # print("decoding===>", self.tokenizer.decode(scores.sort(descending=True).indices.tolist()[0][:self.topk]))
        # import pdb; pdb.set_trace()
        if self.object_token_id in scores.sort(descending=True).indices.tolist()[0][1:self.topk] and self.eos_token_id not in scores.sort(descending=True).indices.tolist()[0][:self.topk] and (input_ids == self.object_token_id).sum() * 2 == (input_ids == self.endofobject_token_id).sum():
            scores[0, self.object_token_id] = 1000
        if input_ids[0, -1] == self.object_token_id and input_ids[0, -2] != self.prebox_token_id:
            if (input_ids[0, :-1] == self.object_token_id).sum() != 0:
                # print("generate a previsual token next")
                scores[0, self.previsual_token_id] = 1000
        elif input_ids[0, -1] == self.previsual_token_id or input_ids[0, -1] == self.visual_token_id:
            # print("stop to run bbox generation for " + "previsual" if input_ids[0, -1] == self.previsual_token_id else "visual")
            scores[0, self.eos_token_id] = 1000
        elif input_ids[0, -1] == self.endofobject_token_id and input_ids[0, -2] != self.box_token_id:
            # print("generate a visual token next")
            scores[0, self.visual_token_id] = 1000
        return scores


def prepare_batch_images(batch, image_processor):
    batch_images = None
    for b in batch:
        b_image = image_processor(b["image"]).unsqueeze(0).unsqueeze(1).unsqueeze(0)
        if batch_images is None:
            batch_images = b_image
        else:
            batch_images = torch.cat([batch_images, b_image], dim=0)
    return batch_images


def evaluate_coco_flickr(
    model,
    tokenizer,
    image_processor,
    batch_size,
    is_flickr=False,
    vis_embed_size=None,
    rank=0,
    world_size=1,
    id=0,
    debug=False,
):
    """Evaluate a model on COCO dataset.
    Returns:
        float: CIDEr score

    """
    visual_logits_processor = VisualLogitsProcessor(tokenizer)
    coco_dataset = load_dataset("coco_caption")
    eval_dataset = coco_dataset["test"]
    model.eval().cuda()
    predictions = dict()
    lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
    media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
    endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
    pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
    bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
    previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
    visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
    box_token = "<|#box#|>"
    prebox_token = "<|#prebox#|>"
    endofobject_token = "<|#endofobject#|>"
    object_token = "<|#object#|>"
    cnt = 0
    if world_size > 1:
        torch.distributed.barrier()
    desc = "Running inference Flickr30" if is_flickr else "Running inference COCO"
    for ii, batch in enumerate(more_itertools.chunked(
        tqdm(eval_dataset, desc=desc, disable=(rank != 0)), batch_size
    )):
        if ii % world_size != rank:
            continue
        cnt += len(batch)
        batch_images = prepare_batch_images(
            batch=batch,
            image_processor=image_processor,
        ).cuda()
        prompt = f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>"
        added_bbox_list = []
        batch_text = [prompt for _ in batch]
        encodings = tokenizer(
            batch_text,
            padding="longest",
            truncation=True,
            return_tensors="pt",
            max_length=2000,
        )
        ori_prompt_length = len(encodings["input_ids"][0])
        have_prebox = False
        while True:
            batch_text = [prompt for _ in batch]
            encodings = tokenizer(
                batch_text,
                padding="longest",
                truncation=True,
                return_tensors="pt",
                max_length=2000,
            )
            input_ids = encodings["input_ids"].cuda()
            attention_mask = encodings["attention_mask"].cuda()
            image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
            image_start_index_list = [[x] for x in image_start_index_list]
            image_nums = [1] * len(input_ids)
            if debug:
                print("input--->",tokenizer.decode(input_ids[0]))
            p1 = MinNewTokensLengthLogitsProcessor(
                prompt_length_to_skip=input_ids.shape[-1],
                min_new_tokens=5,
                eos_token_id=bos_token_id,
            )
            with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
                outputs = model.generate(
                    batch_images,
                    input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=20,
                    # min_new_tokens=8,
                    num_beams=1,
                    # length_penalty=0,
                    image_start_index_list=image_start_index_list,
                    image_nums=image_nums,
                    added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
                    logits_processor_list=[p1, visual_logits_processor],
                )
            if debug:
                print("outputs--->",tokenizer.decode(outputs[0]))
            if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
                prompt = tokenizer.decode(outputs.clone()[0])
                is_visual = (outputs[0, -2] == visual_token_id)
                batch_text = tokenizer.batch_decode(outputs[:, :-1])
                encodings = tokenizer(
                    batch_text,
                    padding="longest",
                    truncation=True,
                    return_tensors="pt",
                    max_length=2000,
                )
                input_ids = encodings["input_ids"].cuda()
                attention_mask = encodings["attention_mask"].cuda()
                image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
                image_start_index_list = [[x] for x in image_start_index_list]
                image_nums = [1] * len(input_ids)
                if debug:
                    print("get the visual bbox--->",tokenizer.decode(input_ids[0]))
                with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
                    outputs = model(
                        vision_x=batch_images,
                        lang_x=input_ids,
                        attention_mask=attention_mask,
                        image_nums=image_nums,
                        image_start_index_list=image_start_index_list,
                        added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
                        add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
                    )
                boxes = outputs["boxes"]
                scores = outputs["scores"]
                # if not model.valid:
                #     import pdb; pdb.set_trace()
                if boxes is not None:
                    if is_visual:
                        if have_prebox:
                            added_bbox_list.pop()
                            prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
                            have_prebox = False
                            if debug:
                                print("find previsual and remove it--->", prompt)
                        first_box = boxes[scores.argmax()]
                        added_bbox_list += [torch.tensor(first_box).unsqueeze(0).cuda() / 224]
                        prompt = prompt[:-len(tokenizer.eos_token)]
                        prompt += box_token + endofobject_token
                        if debug:
                            print("after inserting visual---->", prompt)
                    else:
                        # import numpy as np
                        # import cv2
                        # open_cv_image = np.array(batch[0]["image"])
                        # open_cv_image = open_cv_image[:, :, ::-1].copy()
                        # for pre_box in boxes:
                        #     open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), 2)
                        # cv2.imwrite("Atest.png", open_cv_image)
                        pre_box = boxes[scores.argmax()]
                        added_bbox_list += [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
                        prompt = prompt[:-len(tokenizer.eos_token)]
                        prompt += prebox_token + object_token
                        have_prebox = True
                        if debug:
                            print("after inserting previsual---->", prompt)
                else:
                    import pdb;pdb.set_trace()
                    prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
            else:
                break
        outputs = outputs[:, ori_prompt_length:]
        new_predictions = [
            postprocess_captioning_generation(out).replace('"', "")
            for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ]
        # import pdb; pdb.set_trace()
        if rank == 0:
            tqdm.write(new_predictions[0])
        for i, sample in enumerate(batch):
            predictions[int(sample["image_id"])] = {
                "caption": new_predictions[i],
            }
    results_path = (
        f"flickrresults_{lang_encoder_name}_{rank}_{id}.json"
        if is_flickr
        else f"cocoresults_{lang_encoder_name}_{rank}_{id}.json"
    )
    with open(results_path, "w") as f:
        f.write(
            json.dumps(
                [
                    {"image_id": k, "caption": predictions[k]["caption"]}
                    for k in predictions
                ],
                indent=2,
            )
        )
    print("save to", results_path)
    del predictions
    time.sleep(10)
    if world_size > 1:
        torch.distributed.barrier()
    if rank == 0:
        print(f"evaluate on rank {rank}. world size is {world_size}")
        predictions = []
        for rank_i in range(world_size):
            part_results_path = (
                f"flickrresults_{lang_encoder_name}_{rank_i}_{id}.json"
                if is_flickr
                else f"cocoresults_{lang_encoder_name}_{rank_i}_{id}.json"
            )
            print("load", part_results_path)
            predictions.extend(json.load(open(part_results_path)))
            os.remove(part_results_path)
        print("num:", len(predictions))
        results_path = (
            f"flickrresults_{lang_encoder_name}.json"
            if is_flickr
            else f"cocoresults_{lang_encoder_name}.json"
        )
        json.dump(predictions, open(results_path, "w"), indent=2)

        metrics = compute_cider(
            result_path=results_path,
            annotations_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/.cache/lavis/coco_gt/coco_karpathy_test_gt.json",
        )
        metrics["CIDEr"] *= 100
        os.makedirs("eval_results", exist_ok=True)
        acc = metrics["CIDEr"]
        with open(os.path.join("eval_results", f"cococap_{model.expr_name}_{model.step_num}_{int(time.time())}_{acc}"), "w") as f:
            f.write(json.dumps(predictions, indent=2))

        # delete the temporary file
        os.remove(results_path)
    else:
        metrics = {}
        metrics["CIDEr"] = 0.0

    return metrics["CIDEr"]