Spaces:
Runtime error
Runtime error
File size: 3,177 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
## YOLOX-ONNXRuntime in Python
This doc introduces how to convert your pytorch model into onnx, and how to run an onnxruntime demo to verify your convertion.
### Step1: Install onnxruntime
run the following command to install onnxruntime:
```shell
pip install onnxruntime
```
### Step2: Get ONNX models
Users might download our pre-generated ONNX models or convert their own models to ONNX.
#### Download ONNX models.
| Model | Parameters | GFLOPs | Test Size | mAP | Weights |
|:------| :----: | :----: | :---: | :---: | :---: |
| YOLOX-Nano | 0.91M | 1.08 | 416x416 | 25.8 |[github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_nano.onnx) |
| YOLOX-Tiny | 5.06M | 6.45 | 416x416 |32.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_tiny.onnx) |
| YOLOX-S | 9.0M | 26.8 | 640x640 |40.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.onnx) |
| YOLOX-M | 25.3M | 73.8 | 640x640 |47.2 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_m.onnx) |
| YOLOX-L | 54.2M | 155.6 | 640x640 |50.1 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_l.onnx) |
| YOLOX-Darknet53| 63.72M | 185.3 | 640x640 |48.0 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_darknet.onnx) |
| YOLOX-X | 99.1M | 281.9 | 640x640 |51.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_x.onnx) |
#### Convert Your Model to ONNX
First, you should move to <YOLOX_HOME> by:
```shell
cd <YOLOX_HOME>
```
Then, you can:
1. Convert a standard YOLOX model by -n:
```shell
python3 tools/export_onnx.py --output-name yolox_s.onnx -n yolox-s -c yolox_s.pth
```
Notes:
* -n: specify a model name. The model name must be one of the [yolox-s,m,l,x and yolox-nano, yolox-tiny, yolov3]
* -c: the model you have trained
* -o: opset version, default 11. **However, if you will further convert your onnx model to [OpenVINO](https://github.com/Megvii-BaseDetection/YOLOX/demo/OpenVINO/), please specify the opset version to 10.**
* --no-onnxsim: disable onnxsim
* To customize an input shape for onnx model, modify the following code in tools/export.py:
```python
dummy_input = torch.randn(1, 3, exp.test_size[0], exp.test_size[1])
```
1. Convert a standard YOLOX model by -f. When using -f, the above command is equivalent to:
```shell
python3 tools/export_onnx.py --output-name yolox_s.onnx -f exps/default/yolox_s.py -c yolox_s.pth
```
3. To convert your customized model, please use -f:
```shell
python3 tools/export_onnx.py --output-name your_yolox.onnx -f exps/your_dir/your_yolox.py -c your_yolox.pth
```
### Step3: ONNXRuntime Demo
Step1.
```shell
cd <YOLOX_HOME>/demo/ONNXRuntime
```
Step2.
```shell
python3 onnx_inference.py -m <ONNX_MODEL_PATH> -i <IMAGE_PATH> -o <OUTPUT_DIR> -s 0.3 --input_shape 640,640
```
Notes:
* -m: your converted onnx model
* -i: input_image
* -s: score threshold for visualization.
* --input_shape: should be consistent with the shape you used for onnx convertion.
|