Spaces:
Runtime error
Runtime error
File size: 3,919 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
# Get Started
## 1.Installation
Step1. Install YOLOX.
```shell
git clone [email protected]:Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -U pip && pip3 install -r requirements.txt
pip3 install -v -e . # or python3 setup.py develop
```
Step2. Install [pycocotools](https://github.com/cocodataset/cocoapi).
```shell
pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
```
## 2.Demo
Step1. Download a pretrained model from the benchmark table.
Step2. Use either -n or -f to specify your detector's config. For example:
```shell
python tools/demo.py image -n yolox-s -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```
or
```shell
python tools/demo.py image -f exps/default/yolox_s.py -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```
Demo for video:
```shell
python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth --path /path/to/your/video --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```
## 3.Reproduce our results on COCO
Step1. Prepare COCO dataset
```shell
cd <YOLOX_HOME>
ln -s /path/to/your/COCO ./datasets/COCO
```
Step2. Reproduce our results on COCO by specifying -n:
```shell
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o [--cache]
yolox-m
yolox-l
yolox-x
```
* -d: number of gpu devices
* -b: total batch size, the recommended number for -b is num-gpu * 8
* --fp16: mixed precision training
* --cache: caching imgs into RAM to accelarate training, which need large system RAM.
**Weights & Biases for Logging**
To use W&B for logging, install wandb in your environment and log in to your W&B account using
```shell
pip install wandb
wandb login
```
Log in to your W&B account
To start logging metrics to W&B during training add the flag `--logger` to the previous command and use the prefix "wandb-" to specify arguments for initializing the wandb run.
```shell
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o [--cache] --logger wandb wandb-project <project name>
yolox-m
yolox-l
yolox-x
```
More WandbLogger arguments include
```shell
python tools/train.py .... --logger wandb wandb-project <project-name> \
wandb-name <run-name> \
wandb-id <run-id> \
wandb-save_dir <save-dir> \
wandb-num_eval_images <num-images> \
wandb-log_checkpoints <bool>
```
More information available [here](https://docs.wandb.ai/guides/integrations/other/yolox).
**Multi Machine Training**
We also support multi-nodes training. Just add the following args:
* --num\_machines: num of your total training nodes
* --machine\_rank: specify the rank of each node
When using -f, the above commands are equivalent to:
```shell
python tools/train.py -f exps/default/yolox-s.py -d 8 -b 64 --fp16 -o [--cache]
exps/default/yolox-m.py
exps/default/yolox-l.py
exps/default/yolox-x.py
```
## 4.Evaluation
We support batch testing for fast evaluation:
```shell
python tools/eval.py -n yolox-s -c yolox_s.pth -b 64 -d 8 --conf 0.001 [--fp16] [--fuse]
yolox-m
yolox-l
yolox-x
```
* --fuse: fuse conv and bn
* -d: number of GPUs used for evaluation. DEFAULT: All GPUs available will be used.
* -b: total batch size across on all GPUs
To reproduce speed test, we use the following command:
```shell
python tools/eval.py -n yolox-s -c yolox_s.pth -b 1 -d 1 --conf 0.001 --fp16 --fuse
yolox-m
yolox-l
yolox-x
```
|