File size: 6,363 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import copy
import os

import cv2
import numpy as np
from pycocotools.coco import COCO

from ..dataloading import get_yolox_datadir
from .datasets_wrapper import CacheDataset, cache_read_img


def remove_useless_info(coco):
    """
    Remove useless info in coco dataset. COCO object is modified inplace.
    This function is mainly used for saving memory (save about 30% mem).
    """
    if isinstance(coco, COCO):
        dataset = coco.dataset
        dataset.pop("info", None)
        dataset.pop("licenses", None)
        for img in dataset["images"]:
            img.pop("license", None)
            img.pop("coco_url", None)
            img.pop("date_captured", None)
            img.pop("flickr_url", None)
        if "annotations" in coco.dataset:
            for anno in coco.dataset["annotations"]:
                anno.pop("segmentation", None)


class COCODataset(CacheDataset):
    """
    COCO dataset class.
    """

    def __init__(
        self,
        data_dir=None,
        json_file="instances_train2017.json",
        name="train2017",
        img_size=(416, 416),
        preproc=None,
        cache=False,
        cache_type="ram",
    ):
        """
        COCO dataset initialization. Annotation data are read into memory by COCO API.
        Args:
            data_dir (str): dataset root directory
            json_file (str): COCO json file name
            name (str): COCO data name (e.g. 'train2017' or 'val2017')
            img_size (int): target image size after pre-processing
            preproc: data augmentation strategy
        """
        if data_dir is None:
            data_dir = os.path.join(get_yolox_datadir(), "COCO")
        self.data_dir = data_dir
        self.json_file = json_file

        self.coco = COCO(os.path.join(self.data_dir, "annotations", self.json_file))
        remove_useless_info(self.coco)
        self.ids = self.coco.getImgIds()
        self.num_imgs = len(self.ids)
        self.class_ids = sorted(self.coco.getCatIds())
        self.cats = self.coco.loadCats(self.coco.getCatIds())
        self._classes = tuple([c["name"] for c in self.cats])
        self.name = name
        self.img_size = img_size
        self.preproc = preproc
        self.annotations = self._load_coco_annotations()

        path_filename = [os.path.join(name, anno[3]) for anno in self.annotations]
        super().__init__(
            input_dimension=img_size,
            num_imgs=self.num_imgs,
            data_dir=data_dir,
            cache_dir_name=f"cache_{name}",
            path_filename=path_filename,
            cache=cache,
            cache_type=cache_type
        )

    def __len__(self):
        return self.num_imgs

    def _load_coco_annotations(self):
        return [self.load_anno_from_ids(_ids) for _ids in self.ids]

    def load_anno_from_ids(self, id_):
        im_ann = self.coco.loadImgs(id_)[0]
        width = im_ann["width"]
        height = im_ann["height"]
        anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=False)
        annotations = self.coco.loadAnns(anno_ids)
        objs = []
        for obj in annotations:
            x1 = np.max((0, obj["bbox"][0]))
            y1 = np.max((0, obj["bbox"][1]))
            x2 = np.min((width, x1 + np.max((0, obj["bbox"][2]))))
            y2 = np.min((height, y1 + np.max((0, obj["bbox"][3]))))
            if obj["area"] > 0 and x2 >= x1 and y2 >= y1:
                obj["clean_bbox"] = [x1, y1, x2, y2]
                objs.append(obj)

        num_objs = len(objs)

        res = np.zeros((num_objs, 5))
        for ix, obj in enumerate(objs):
            cls = self.class_ids.index(obj["category_id"])
            res[ix, 0:4] = obj["clean_bbox"]
            res[ix, 4] = cls

        r = min(self.img_size[0] / height, self.img_size[1] / width)
        res[:, :4] *= r

        img_info = (height, width)
        resized_info = (int(height * r), int(width * r))

        file_name = (
            im_ann["file_name"]
            if "file_name" in im_ann
            else "{:012}".format(id_) + ".jpg"
        )

        return (res, img_info, resized_info, file_name)

    def load_anno(self, index):
        return self.annotations[index][0]

    def load_resized_img(self, index):
        img = self.load_image(index)
        r = min(self.img_size[0] / img.shape[0], self.img_size[1] / img.shape[1])
        resized_img = cv2.resize(
            img,
            (int(img.shape[1] * r), int(img.shape[0] * r)),
            interpolation=cv2.INTER_LINEAR,
        ).astype(np.uint8)
        return resized_img

    def load_image(self, index):
        file_name = self.annotations[index][3]

        img_file = os.path.join(self.data_dir, self.name, file_name)

        img = cv2.imread(img_file)
        assert img is not None, f"file named {img_file} not found"

        return img

    @cache_read_img(use_cache=True)
    def read_img(self, index):
        return self.load_resized_img(index)

    def pull_item(self, index):
        id_ = self.ids[index]
        label, origin_image_size, _, _ = self.annotations[index]
        img = self.read_img(index)

        return img, copy.deepcopy(label), origin_image_size, np.array([id_])

    @CacheDataset.mosaic_getitem
    def __getitem__(self, index):
        """
        One image / label pair for the given index is picked up and pre-processed.

        Args:
            index (int): data index

        Returns:
            img (numpy.ndarray): pre-processed image
            padded_labels (torch.Tensor): pre-processed label data.
                The shape is :math:`[max_labels, 5]`.
                each label consists of [class, xc, yc, w, h]:
                    class (float): class index.
                    xc, yc (float) : center of bbox whose values range from 0 to 1.
                    w, h (float) : size of bbox whose values range from 0 to 1.
            info_img : tuple of h, w.
                h, w (int): original shape of the image
            img_id (int): same as the input index. Used for evaluation.
        """
        img, target, img_info, img_id = self.pull_item(index)

        if self.preproc is not None:
            img, target = self.preproc(img, target, self.input_dim)
        return img, target, img_info, img_id