Spaces:
Runtime error
Runtime error
File size: 10,878 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import bisect
import copy
import os
import random
from abc import ABCMeta, abstractmethod
from functools import partial, wraps
from multiprocessing.pool import ThreadPool
import psutil
from loguru import logger
from tqdm import tqdm
import numpy as np
from torch.utils.data.dataset import ConcatDataset as torchConcatDataset
from torch.utils.data.dataset import Dataset as torchDataset
class ConcatDataset(torchConcatDataset):
def __init__(self, datasets):
super(ConcatDataset, self).__init__(datasets)
if hasattr(self.datasets[0], "input_dim"):
self._input_dim = self.datasets[0].input_dim
self.input_dim = self.datasets[0].input_dim
def pull_item(self, idx):
if idx < 0:
if -idx > len(self):
raise ValueError(
"absolute value of index should not exceed dataset length"
)
idx = len(self) + idx
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return self.datasets[dataset_idx].pull_item(sample_idx)
class MixConcatDataset(torchConcatDataset):
def __init__(self, datasets):
super(MixConcatDataset, self).__init__(datasets)
if hasattr(self.datasets[0], "input_dim"):
self._input_dim = self.datasets[0].input_dim
self.input_dim = self.datasets[0].input_dim
def __getitem__(self, index):
if not isinstance(index, int):
idx = index[1]
if idx < 0:
if -idx > len(self):
raise ValueError(
"absolute value of index should not exceed dataset length"
)
idx = len(self) + idx
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
if not isinstance(index, int):
index = (index[0], sample_idx, index[2])
return self.datasets[dataset_idx][index]
class Dataset(torchDataset):
""" This class is a subclass of the base :class:`torch.utils.data.Dataset`,
that enables on the fly resizing of the ``input_dim``.
Args:
input_dimension (tuple): (width,height) tuple with default dimensions of the network
"""
def __init__(self, input_dimension, mosaic=True):
super().__init__()
self.__input_dim = input_dimension[:2]
self.enable_mosaic = mosaic
@property
def input_dim(self):
"""
Dimension that can be used by transforms to set the correct image size, etc.
This allows transforms to have a single source of truth
for the input dimension of the network.
Return:
list: Tuple containing the current width,height
"""
if hasattr(self, "_input_dim"):
return self._input_dim
return self.__input_dim
@staticmethod
def mosaic_getitem(getitem_fn):
"""
Decorator method that needs to be used around the ``__getitem__`` method. |br|
This decorator enables the closing mosaic
Example:
>>> class CustomSet(ln.data.Dataset):
... def __len__(self):
... return 10
... @ln.data.Dataset.mosaic_getitem
... def __getitem__(self, index):
... return self.enable_mosaic
"""
@wraps(getitem_fn)
def wrapper(self, index):
if not isinstance(index, int):
self.enable_mosaic = index[0]
index = index[1]
ret_val = getitem_fn(self, index)
return ret_val
return wrapper
class CacheDataset(Dataset, metaclass=ABCMeta):
""" This class is a subclass of the base :class:`yolox.data.datasets.Dataset`,
that enables cache images to ram or disk.
Args:
input_dimension (tuple): (width,height) tuple with default dimensions of the network
num_imgs (int): datset size
data_dir (str): the root directory of the dataset, e.g. `/path/to/COCO`.
cache_dir_name (str): the name of the directory to cache to disk,
e.g. `"custom_cache"`. The files cached to disk will be saved
under `/path/to/COCO/custom_cache`.
path_filename (str): a list of paths to the data relative to the `data_dir`,
e.g. if you have data `/path/to/COCO/train/1.jpg`, `/path/to/COCO/train/2.jpg`,
then `path_filename = ['train/1.jpg', ' train/2.jpg']`.
cache (bool): whether to cache the images to ram or disk.
cache_type (str): the type of cache,
"ram" : Caching imgs to ram for fast training.
"disk": Caching imgs to disk for fast training.
"""
def __init__(
self,
input_dimension,
num_imgs=None,
data_dir=None,
cache_dir_name=None,
path_filename=None,
cache=False,
cache_type="ram",
):
super().__init__(input_dimension)
self.cache = cache
self.cache_type = cache_type
if self.cache and self.cache_type == "disk":
self.cache_dir = os.path.join(data_dir, cache_dir_name)
self.path_filename = path_filename
if self.cache and self.cache_type == "ram":
self.imgs = None
if self.cache:
self.cache_images(
num_imgs=num_imgs,
data_dir=data_dir,
cache_dir_name=cache_dir_name,
path_filename=path_filename,
)
def __del__(self):
if self.cache and self.cache_type == "ram":
del self.imgs
@abstractmethod
def read_img(self, index):
"""
Given index, return the corresponding image
Args:
index (int): image index
"""
raise NotImplementedError
def cache_images(
self,
num_imgs=None,
data_dir=None,
cache_dir_name=None,
path_filename=None,
):
assert num_imgs is not None, "num_imgs must be specified as the size of the dataset"
if self.cache_type == "disk":
assert (data_dir and cache_dir_name and path_filename) is not None, \
"data_dir, cache_name and path_filename must be specified if cache_type is disk"
self.path_filename = path_filename
mem = psutil.virtual_memory()
mem_required = self.cal_cache_occupy(num_imgs)
gb = 1 << 30
if self.cache_type == "ram":
if mem_required > mem.available:
self.cache = False
else:
logger.info(
f"{mem_required / gb:.1f}GB RAM required, "
f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB RAM available, "
f"Since the first thing we do is cache, "
f"there is no guarantee that the remaining memory space is sufficient"
)
if self.cache and self.imgs is None:
if self.cache_type == 'ram':
self.imgs = [None] * num_imgs
logger.info("You are using cached images in RAM to accelerate training!")
else: # 'disk'
if not os.path.exists(self.cache_dir):
os.mkdir(self.cache_dir)
logger.warning(
f"\n*******************************************************************\n"
f"You are using cached images in DISK to accelerate training.\n"
f"This requires large DISK space.\n"
f"Make sure you have {mem_required / gb:.1f} "
f"available DISK space for training your dataset.\n"
f"*******************************************************************\\n"
)
else:
logger.info(f"Found disk cache at {self.cache_dir}")
return
logger.info(
"Caching images...\n"
"This might take some time for your dataset"
)
num_threads = min(8, max(1, os.cpu_count() - 1))
b = 0
load_imgs = ThreadPool(num_threads).imap(
partial(self.read_img, use_cache=False),
range(num_imgs)
)
pbar = tqdm(enumerate(load_imgs), total=num_imgs)
for i, x in pbar: # x = self.read_img(self, i, use_cache=False)
if self.cache_type == 'ram':
self.imgs[i] = x
else: # 'disk'
cache_filename = f'{self.path_filename[i].split(".")[0]}.npy'
cache_path_filename = os.path.join(self.cache_dir, cache_filename)
os.makedirs(os.path.dirname(cache_path_filename), exist_ok=True)
np.save(cache_path_filename, x)
b += x.nbytes
pbar.desc = \
f'Caching images ({b / gb:.1f}/{mem_required / gb:.1f}GB {self.cache_type})'
pbar.close()
def cal_cache_occupy(self, num_imgs):
cache_bytes = 0
num_samples = min(num_imgs, 32)
for _ in range(num_samples):
img = self.read_img(index=random.randint(0, num_imgs - 1), use_cache=False)
cache_bytes += img.nbytes
mem_required = cache_bytes * num_imgs / num_samples
return mem_required
def cache_read_img(use_cache=True):
def decorator(read_img_fn):
"""
Decorate the read_img function to cache the image
Args:
read_img_fn: read_img function
use_cache (bool, optional): For the decorated read_img function,
whether to read the image from cache.
Defaults to True.
"""
@wraps(read_img_fn)
def wrapper(self, index, use_cache=use_cache):
cache = self.cache and use_cache
if cache:
if self.cache_type == "ram":
img = self.imgs[index]
img = copy.deepcopy(img)
elif self.cache_type == "disk":
img = np.load(
os.path.join(
self.cache_dir, f"{self.path_filename[index].split('.')[0]}.npy"))
else:
raise ValueError(f"Unknown cache type: {self.cache_type}")
else:
img = read_img_fn(self, index)
return img
return wrapper
return decorator
|