File size: 9,573 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.

import random

import cv2
import numpy as np

from yolox.utils import adjust_box_anns, get_local_rank

from ..data_augment import random_affine
from .datasets_wrapper import Dataset


def get_mosaic_coordinate(mosaic_image, mosaic_index, xc, yc, w, h, input_h, input_w):
    # TODO update doc
    # index0 to top left part of image
    if mosaic_index == 0:
        x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc
        small_coord = w - (x2 - x1), h - (y2 - y1), w, h
    # index1 to top right part of image
    elif mosaic_index == 1:
        x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc
        small_coord = 0, h - (y2 - y1), min(w, x2 - x1), h
    # index2 to bottom left part of image
    elif mosaic_index == 2:
        x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h)
        small_coord = w - (x2 - x1), 0, w, min(y2 - y1, h)
    # index2 to bottom right part of image
    elif mosaic_index == 3:
        x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2, yc + h)  # noqa
        small_coord = 0, 0, min(w, x2 - x1), min(y2 - y1, h)
    return (x1, y1, x2, y2), small_coord


class MosaicDetection(Dataset):
    """Detection dataset wrapper that performs mixup for normal dataset."""

    def __init__(
        self, dataset, img_size, mosaic=True, preproc=None,
        degrees=10.0, translate=0.1, mosaic_scale=(0.5, 1.5),
        mixup_scale=(0.5, 1.5), shear=2.0, enable_mixup=True,
        mosaic_prob=1.0, mixup_prob=1.0, *args
    ):
        """

        Args:
            dataset(Dataset) : Pytorch dataset object.
            img_size (tuple):
            mosaic (bool): enable mosaic augmentation or not.
            preproc (func):
            degrees (float):
            translate (float):
            mosaic_scale (tuple):
            mixup_scale (tuple):
            shear (float):
            enable_mixup (bool):
            *args(tuple) : Additional arguments for mixup random sampler.
        """
        super().__init__(img_size, mosaic=mosaic)
        self._dataset = dataset
        self.preproc = preproc
        self.degrees = degrees
        self.translate = translate
        self.scale = mosaic_scale
        self.shear = shear
        self.mixup_scale = mixup_scale
        self.enable_mosaic = mosaic
        self.enable_mixup = enable_mixup
        self.mosaic_prob = mosaic_prob
        self.mixup_prob = mixup_prob
        self.local_rank = get_local_rank()

    def __len__(self):
        return len(self._dataset)

    @Dataset.mosaic_getitem
    def __getitem__(self, idx):
        if self.enable_mosaic and random.random() < self.mosaic_prob:
            mosaic_labels = []
            input_dim = self._dataset.input_dim
            input_h, input_w = input_dim[0], input_dim[1]

            # yc, xc = s, s  # mosaic center x, y
            yc = int(random.uniform(0.5 * input_h, 1.5 * input_h))
            xc = int(random.uniform(0.5 * input_w, 1.5 * input_w))

            # 3 additional image indices
            indices = [idx] + [random.randint(0, len(self._dataset) - 1) for _ in range(3)]

            for i_mosaic, index in enumerate(indices):
                img, _labels, _, img_id = self._dataset.pull_item(index)
                h0, w0 = img.shape[:2]  # orig hw
                scale = min(1. * input_h / h0, 1. * input_w / w0)
                img = cv2.resize(
                    img, (int(w0 * scale), int(h0 * scale)), interpolation=cv2.INTER_LINEAR
                )
                # generate output mosaic image
                (h, w, c) = img.shape[:3]
                if i_mosaic == 0:
                    mosaic_img = np.full((input_h * 2, input_w * 2, c), 114, dtype=np.uint8)

                # suffix l means large image, while s means small image in mosaic aug.
                (l_x1, l_y1, l_x2, l_y2), (s_x1, s_y1, s_x2, s_y2) = get_mosaic_coordinate(
                    mosaic_img, i_mosaic, xc, yc, w, h, input_h, input_w
                )

                mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2]
                padw, padh = l_x1 - s_x1, l_y1 - s_y1

                labels = _labels.copy()
                # Normalized xywh to pixel xyxy format
                if _labels.size > 0:
                    labels[:, 0] = scale * _labels[:, 0] + padw
                    labels[:, 1] = scale * _labels[:, 1] + padh
                    labels[:, 2] = scale * _labels[:, 2] + padw
                    labels[:, 3] = scale * _labels[:, 3] + padh
                mosaic_labels.append(labels)

            if len(mosaic_labels):
                mosaic_labels = np.concatenate(mosaic_labels, 0)
                np.clip(mosaic_labels[:, 0], 0, 2 * input_w, out=mosaic_labels[:, 0])
                np.clip(mosaic_labels[:, 1], 0, 2 * input_h, out=mosaic_labels[:, 1])
                np.clip(mosaic_labels[:, 2], 0, 2 * input_w, out=mosaic_labels[:, 2])
                np.clip(mosaic_labels[:, 3], 0, 2 * input_h, out=mosaic_labels[:, 3])

            mosaic_img, mosaic_labels = random_affine(
                mosaic_img,
                mosaic_labels,
                target_size=(input_w, input_h),
                degrees=self.degrees,
                translate=self.translate,
                scales=self.scale,
                shear=self.shear,
            )

            # -----------------------------------------------------------------
            # CopyPaste: https://arxiv.org/abs/2012.07177
            # -----------------------------------------------------------------
            if (
                self.enable_mixup
                and not len(mosaic_labels) == 0
                and random.random() < self.mixup_prob
            ):
                mosaic_img, mosaic_labels = self.mixup(mosaic_img, mosaic_labels, self.input_dim)
            mix_img, padded_labels = self.preproc(mosaic_img, mosaic_labels, self.input_dim)
            img_info = (mix_img.shape[1], mix_img.shape[0])

            # -----------------------------------------------------------------
            # img_info and img_id are not used for training.
            # They are also hard to be specified on a mosaic image.
            # -----------------------------------------------------------------
            return mix_img, padded_labels, img_info, img_id

        else:
            self._dataset._input_dim = self.input_dim
            img, label, img_info, img_id = self._dataset.pull_item(idx)
            img, label = self.preproc(img, label, self.input_dim)
            return img, label, img_info, img_id

    def mixup(self, origin_img, origin_labels, input_dim):
        jit_factor = random.uniform(*self.mixup_scale)
        FLIP = random.uniform(0, 1) > 0.5
        cp_labels = []
        while len(cp_labels) == 0:
            cp_index = random.randint(0, self.__len__() - 1)
            cp_labels = self._dataset.load_anno(cp_index)
        img, cp_labels, _, _ = self._dataset.pull_item(cp_index)

        if len(img.shape) == 3:
            cp_img = np.ones((input_dim[0], input_dim[1], 3), dtype=np.uint8) * 114
        else:
            cp_img = np.ones(input_dim, dtype=np.uint8) * 114

        cp_scale_ratio = min(input_dim[0] / img.shape[0], input_dim[1] / img.shape[1])
        resized_img = cv2.resize(
            img,
            (int(img.shape[1] * cp_scale_ratio), int(img.shape[0] * cp_scale_ratio)),
            interpolation=cv2.INTER_LINEAR,
        )

        cp_img[
            : int(img.shape[0] * cp_scale_ratio), : int(img.shape[1] * cp_scale_ratio)
        ] = resized_img

        cp_img = cv2.resize(
            cp_img,
            (int(cp_img.shape[1] * jit_factor), int(cp_img.shape[0] * jit_factor)),
        )
        cp_scale_ratio *= jit_factor

        if FLIP:
            cp_img = cp_img[:, ::-1, :]

        origin_h, origin_w = cp_img.shape[:2]
        target_h, target_w = origin_img.shape[:2]
        padded_img = np.zeros(
            (max(origin_h, target_h), max(origin_w, target_w), 3), dtype=np.uint8
        )
        padded_img[:origin_h, :origin_w] = cp_img

        x_offset, y_offset = 0, 0
        if padded_img.shape[0] > target_h:
            y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
        if padded_img.shape[1] > target_w:
            x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
        padded_cropped_img = padded_img[
            y_offset: y_offset + target_h, x_offset: x_offset + target_w
        ]

        cp_bboxes_origin_np = adjust_box_anns(
            cp_labels[:, :4].copy(), cp_scale_ratio, 0, 0, origin_w, origin_h
        )
        if FLIP:
            cp_bboxes_origin_np[:, 0::2] = (
                origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1]
            )
        cp_bboxes_transformed_np = cp_bboxes_origin_np.copy()
        cp_bboxes_transformed_np[:, 0::2] = np.clip(
            cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w
        )
        cp_bboxes_transformed_np[:, 1::2] = np.clip(
            cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h
        )

        cls_labels = cp_labels[:, 4:5].copy()
        box_labels = cp_bboxes_transformed_np
        labels = np.hstack((box_labels, cls_labels))
        origin_labels = np.vstack((origin_labels, labels))
        origin_img = origin_img.astype(np.float32)
        origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32)

        return origin_img.astype(np.uint8), origin_labels