File size: 5,101 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python3
# Copyright (c) Megvii Inc. All rights reserved.

import os
import random

import cv2
import numpy as np

__all__ = [
    "mkdir", "nms", "multiclass_nms", "demo_postprocess", "random_color", "visualize_assign"
]


def random_color():
    return random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)


def visualize_assign(img, boxes, coords, match_results, save_name=None) -> np.ndarray:
    """visualize label assign result.

    Args:
        img: img to visualize
        boxes: gt boxes in xyxy format
        coords: coords of matched anchors
        match_results: match results of each gt box and coord.
        save_name: name of save image, if None, image will not be saved. Default: None.
    """
    for box_id, box in enumerate(boxes):
        x1, y1, x2, y2 = box
        color = random_color()
        assign_coords = coords[match_results == box_id]
        if assign_coords.numel() == 0:
            # unmatched boxes are red
            color = (0, 0, 255)
            cv2.putText(
                img, "unmatched", (int(x1), int(y1) - 5),
                cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1
            )
        else:
            for coord in assign_coords:
                # draw assigned anchor
                cv2.circle(img, (int(coord[0]), int(coord[1])), 3, color, -1)
        cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)

    if save_name is not None:
        cv2.imwrite(save_name, img)

    return img


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def nms(boxes, scores, nms_thr):
    """Single class NMS implemented in Numpy."""
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= nms_thr)[0]
        order = order[inds + 1]

    return keep


def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
    """Multiclass NMS implemented in Numpy"""
    if class_agnostic:
        nms_method = multiclass_nms_class_agnostic
    else:
        nms_method = multiclass_nms_class_aware
    return nms_method(boxes, scores, nms_thr, score_thr)


def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
    """Multiclass NMS implemented in Numpy. Class-aware version."""
    final_dets = []
    num_classes = scores.shape[1]
    for cls_ind in range(num_classes):
        cls_scores = scores[:, cls_ind]
        valid_score_mask = cls_scores > score_thr
        if valid_score_mask.sum() == 0:
            continue
        else:
            valid_scores = cls_scores[valid_score_mask]
            valid_boxes = boxes[valid_score_mask]
            keep = nms(valid_boxes, valid_scores, nms_thr)
            if len(keep) > 0:
                cls_inds = np.ones((len(keep), 1)) * cls_ind
                dets = np.concatenate(
                    [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
                )
                final_dets.append(dets)
    if len(final_dets) == 0:
        return None
    return np.concatenate(final_dets, 0)


def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
    """Multiclass NMS implemented in Numpy. Class-agnostic version."""
    cls_inds = scores.argmax(1)
    cls_scores = scores[np.arange(len(cls_inds)), cls_inds]

    valid_score_mask = cls_scores > score_thr
    if valid_score_mask.sum() == 0:
        return None
    valid_scores = cls_scores[valid_score_mask]
    valid_boxes = boxes[valid_score_mask]
    valid_cls_inds = cls_inds[valid_score_mask]
    keep = nms(valid_boxes, valid_scores, nms_thr)
    if keep:
        dets = np.concatenate(
            [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
        )
    return dets


def demo_postprocess(outputs, img_size, p6=False):
    grids = []
    expanded_strides = []
    strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]

    hsizes = [img_size[0] // stride for stride in strides]
    wsizes = [img_size[1] // stride for stride in strides]

    for hsize, wsize, stride in zip(hsizes, wsizes, strides):
        xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
        grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
        grids.append(grid)
        shape = grid.shape[:2]
        expanded_strides.append(np.full((*shape, 1), stride))

    grids = np.concatenate(grids, 1)
    expanded_strides = np.concatenate(expanded_strides, 1)
    outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
    outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides

    return outputs