Spaces:
Runtime error
Runtime error
File size: 16,267 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import os
import json
import subprocess
import numpy as np
from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset
from easydict import EasyDict as edict
from torchvision.datasets.utils import download_url
from .perturbations import TextShuffler
from .constants import ARO_ROOT, COCO_ROOT, FLICKR_ROOT
from .retrieval import pre_caption
class VG_Relation(Dataset):
def __init__(self, image_preprocess, text_perturb_fn=None, image_perturb_fn=None, root_dir=ARO_ROOT, download=False):
'''
image_preprocess: a function that takes in a PIL image and returns a tensor.
text_perturb_fn: Not used for this dataset. Just for compatibility with other datasets.
image_perturb_fn: Not used for this dataset. Just for compatibility with other datasets.
root_dir: Directory for the VG-R dataset.
download: Whether to download the dataset if it does not exist.
'''
self.root_dir = root_dir
annotation_file = os.path.join(root_dir, "visual_genome_relation.json")
image_dir = os.path.join(root_dir, "images")
if not os.path.exists(image_dir):
print("Image Directory for VG_Relation could not be found!")
if download:
self.download()
else:
raise RuntimeError("Please either download the dataset by letting `--download` or specify the correct directory.")
if not os.path.exists(annotation_file):
subprocess.call(["gdown", "--id", "1kX2iCHEv0CADL8dSO1nMdW-V0NqIAiP3", "--output", annotation_file])
with open(annotation_file, "r") as f:
self.dataset = json.load(f)
self.all_relations = list()
for item in self.dataset:
item["image_path"] = os.path.join(image_dir, item["image_path"])
self.all_relations.append(item["relation_name"])
self.image_preprocess = image_preprocess
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
test_case = self.dataset[index]
image = Image.open(test_case["image_path"]).convert('RGB')
# Get the bounding box that contains the relation. This is to remove the irrelevant details in the scene.
image = image.crop((test_case["bbox_x"], test_case["bbox_y"], test_case["bbox_x"] + test_case["bbox_w"], test_case["bbox_y"] + test_case["bbox_h"]))
if self.image_preprocess is not None:
image = self.image_preprocess(image)
# Each test case has a correct and incorrect caption.
true_caption = test_case["true_caption"]
false_caption = test_case["false_caption"]
item = edict({"image_options": [image], "caption_options": [false_caption, true_caption]})
return item
def download(self):
os.makedirs(self.root_dir, exist_ok=True)
image_zip_file = os.path.join(self.root_dir, "vgr_vga_images.zip")
subprocess.call(["gdown", "--no-cookies", "1qaPlrwhGNMrR3a11iopZUT_GPP_LrgP9", "--output", image_zip_file])
subprocess.call(["unzip", "vgr_vga_images.zip"], cwd=self.root_dir)
def evaluate_scores(self, scores):
"""
Scores: N x 1 x 2, i.e. first caption is the perturbed one, second is the positive one
"""
if isinstance(scores, tuple):
scores_i2t = scores[1]
scores_t2i = scores[0]
else:
scores_t2i = scores
scores_i2t = scores
metrics = {"Accuracy": None}
preds = np.argmax(np.squeeze(scores_i2t, axis=1), axis=-1)
correct_mask = (preds == 1)
metrics["Accuracy"] = np.mean(correct_mask)
all_relations = np.array(self.all_relations)
result_records = []
# Log the accuracy of all relations
for relation in np.unique(all_relations):
relation_mask = (all_relations == relation)
if relation_mask.sum() == 0:
continue
result_records.append({
"Relation": relation,
"Accuracy": correct_mask[relation_mask].mean(),
"Count": relation_mask.sum(),
"Dataset": "Visual Genome Relation"
})
return result_records
class VG_Attribution(Dataset):
def __init__(self, image_preprocess, text_perturb_fn=None, image_perturb_fn=None, root_dir=ARO_ROOT, download=False):
'''
image_preprocess: a function that takes in a PIL image and returns a tensor.
text_perturb_fn: Not used for this dataset. Just for compatibility with other datasets.
image_perturb_fn: Not used for this dataset. Just for compatibility with other datasets.
root_dir: Directory for the VG-A dataset.
'''
self.root_dir = root_dir
annotation_file = os.path.join(root_dir, "visual_genome_attribution.json")
image_dir = os.path.join(root_dir, "images")
if not os.path.exists(image_dir):
print("Image Directory for VG_Attribution could not be found!")
if download:
self.download()
else:
raise RuntimeError("Please either download the dataset by letting `--download` or specify the correct directory.")
if not os.path.exists(annotation_file):
subprocess.call(["gdown", "--id", "13tWvOrNOLHxl3Rm9cR3geAdHx2qR3-Tw", "--output", annotation_file])
with open(annotation_file, "r") as f:
self.dataset = json.load(f)
for item in self.dataset:
item["image_path"] = os.path.join(image_dir, item["image_path"])
# Set of attributes in each test case
self.all_attributes = [f"{item['attributes'][0]}_{item['attributes'][1]}" for item in self.dataset]
self.image_preprocess = image_preprocess
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
test_case = self.dataset[index]
image = Image.open(test_case["image_path"]).convert('RGB')
# Get the bounding box that contains the relation. This is to remove the irrelevant details in the scene.
image = image.crop((test_case["bbox_x"], test_case["bbox_y"], test_case["bbox_x"] + test_case["bbox_w"], test_case["bbox_y"] + test_case["bbox_h"]))
if self.image_preprocess is not None:
image = self.image_preprocess(image)
# Each test case has a correct and incorrect caption.
true_caption = test_case["true_caption"]
false_caption = test_case["false_caption"]
item = edict({"image_options": [image], "caption_options": [false_caption, true_caption]})
return item
def download(self):
os.makedirs(self.root_dir, exist_ok=True)
image_zip_file = os.path.join(self.root_dir, "vgr_vga_images.zip")
subprocess.call(["gdown", "--no-cookies", "1qaPlrwhGNMrR3a11iopZUT_GPP_LrgP9", "--output", image_zip_file])
subprocess.call(["unzip", "vgr_vga_images.zip"], cwd=self.root_dir)
def evaluate_scores(self, scores):
"""
Scores: N x 1 x 2, i.e. first caption is the perturbed one, second is the positive one
"""
if isinstance(scores, tuple):
scores_i2t = scores[1]
scores_t2i = scores[0]
else:
scores_t2i = scores
scores_i2t = scores
preds = np.argmax(np.squeeze(scores_i2t, axis=1), axis=-1)
correct_mask = (preds == 1)
result_records = []
all_attributes = np.array(self.all_attributes)
for attr in np.unique(all_attributes):
attr_mask = (all_attributes == attr)
if attr_mask.sum() < 25:
continue
result_records.append({
"Attributes": attr,
"Accuracy": correct_mask[attr_mask].mean(),
"Count": attr_mask.sum(),
"Dataset": "Visual Genome Attribution"
})
return result_records
class COCO_Order(Dataset):
def __init__(self, image_preprocess=None, root_dir=COCO_ROOT, max_words=30, split="test",
image_perturb_fn=None, download=False):
"""
COCO Order Dataset.
image_preprocess: image preprocessing function
root_dir: The directory of the coco dataset. This directory should contain test2014 files.
max_words: Cropping the caption to max_words.
split: 'val' or 'test'
image_perturb_fn: not used; for compatibility.
download: Whether to download the dataset if it does not exist.
"""
shuffler = TextShuffler()
perturb_functions = [shuffler.shuffle_nouns_and_adj, shuffler.shuffle_allbut_nouns_and_adj,
shuffler.shuffle_within_trigrams, shuffler.shuffle_trigrams]
self.root_dir = root_dir
if not os.path.exists(root_dir):
print("Directory for COCO could not be found!")
if download:
print("Downloading COCO now.")
self.download()
else:
raise RuntimeError("Please either download the dataset by letting `--download` or specify the correct directory.")
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
download_url(urls[split],root_dir)
self.annotation = json.load(open(os.path.join(root_dir,filenames[split]),'r'))
self.image_preprocess = image_preprocess
self.image_root = root_dir
self.test_cases = []
for img_id, ann in tqdm(enumerate(self.annotation)):
for i, caption in enumerate(ann['caption']):
test_case = {}
test_case["image"] = ann["image"]
test_case["caption_options"] = [pre_caption(caption,max_words)]
for perturb_fn in perturb_functions:
test_case["caption_options"].append(pre_caption(perturb_fn(caption), max_words))
self.test_cases.append(test_case)
def __len__(self):
return len(self.test_cases)
def __getitem__(self, index):
test_case = self.test_cases[index]
image_path = os.path.join(self.image_root, test_case["image"])
image = Image.open(image_path).convert('RGB')
if self.image_preprocess is not None:
image = self.image_preprocess(image)
item = edict({"image_options": [image], "caption_options": test_case["caption_options"]})
return item
def download(self):
import subprocess
os.makedirs(self.root_dir, exist_ok=True)
#subprocess.call(["wget", "http://images.cocodataset.org/zips/train2014.zip"], cwd=self.root_dir)
#subprocess.call(["unzip", "train2014.zip"], cwd=self.root_dir)
subprocess.call(["wget", "http://images.cocodataset.org/zips/val2014.zip"], cwd=self.root_dir)
subprocess.call(["unzip", "val2014.zip"], cwd=self.root_dir)
subprocess.call(["wget", "http://images.cocodataset.org/zips/test2014.zip"], cwd=self.root_dir)
subprocess.call(["unzip", "test2014.zip"], cwd=self.root_dir)
def evaluate_scores(self, scores):
if isinstance(scores, tuple):
scores_i2t = scores[0]
scores_t2i = scores[1].T # Make it N_ims x N_text
else:
scores_t2i = scores
scores_i2t = scores
preds = np.argmax(np.squeeze(scores_i2t, axis=1), axis=-1)
correct_mask = (preds == 0)
records = [{"Precision@1": np.mean(correct_mask)}]
return records
class Flickr30k_Order(Dataset):
def __init__(self, image_preprocess, split, root_dir=FLICKR_ROOT, max_words=30,
*args, **kwargs):
"""
image_preprocess: image preprocessing function
split: 'val' or 'test'
root_dir: The directory of the flickr30k images. This should contain the `flickr30k-images` directory that \
contains all the images.
"""
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_val.json',
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_test.json'}
filenames = {'val':'flickr30k_val.json','test':'flickr30k_test.json'}
if not os.path.exists(root_dir):
print("Directory for Flickr30k could not be found!")
flickr_url = "https://forms.illinois.edu/sec/229675"
raise RuntimeError(f"You need to manually sign up and download the dataset from {flickr_url} and place it in the `root_dir`.")
download_url(urls[split],root_dir)
self.annotation = json.load(open(os.path.join(root_dir,filenames[split]),'r'))
self.image_preprocess = image_preprocess
self.root_dir = root_dir
self.test_cases = []
shuffler = TextShuffler()
perturb_functions = [shuffler.shuffle_nouns_and_adj, shuffler.shuffle_allbut_nouns_and_adj,
shuffler.shuffle_within_trigrams, shuffler.shuffle_trigrams]
for img_id, ann in tqdm(enumerate(self.annotation)):
for i, caption in enumerate(ann['caption']):
test_case = {}
test_case["image"] = ann["image"]
test_case["caption_options"] = [pre_caption(caption,max_words)]
for perturb_fn in perturb_functions:
test_case["caption_options"].append(pre_caption(perturb_fn(caption), max_words))
self.test_cases.append(test_case)
def __len__(self):
return len(self.test_cases)
def __getitem__(self, index):
test_case = self.test_cases[index]
image_path = os.path.join(self.root_dir, test_case["image"])
image = Image.open(image_path).convert('RGB')
if self.image_preprocess is not None:
image = self.image_preprocess(image)
item = edict({"image_options": [image], "caption_options": test_case["caption_options"]})
return item
def evaluate_scores(self, scores):
if isinstance(scores, tuple):
scores_i2t = scores[0]
scores_t2i = scores[1].T # Make it N_ims x N_text
else:
scores_t2i = scores
scores_i2t = scores
preds = np.argmax(np.squeeze(scores_i2t, axis=1), axis=-1)
correct_mask = (preds == 0)
result_records = [{"Precision@1": np.mean(correct_mask)}]
return result_records
def get_visual_genome_relation(image_preprocess, text_perturb_fn=None, image_perturb_fn=None, download=False):
return VG_Relation(image_preprocess=image_preprocess, text_perturb_fn=text_perturb_fn, image_perturb_fn=image_perturb_fn, download=download)
def get_visual_genome_attribution(image_preprocess, text_perturb_fn=None, image_perturb_fn=None, download=False):
return VG_Attribution(image_preprocess=image_preprocess, text_perturb_fn=text_perturb_fn,
image_perturb_fn=image_perturb_fn, download=download)
def get_coco_order(image_preprocess, image_perturb_fn, text_perturb_fn, max_words=30, download=False, root_dir=COCO_ROOT, split="test"):
return COCO_Order(root_dir=root_dir, split=split, image_preprocess=image_preprocess, image_perturb_fn=image_perturb_fn, max_words=max_words,
download=download)
def get_flickr30k_order(image_preprocess, image_perturb_fn, text_perturb_fn, max_words=30, download=False, root_dir=FLICKR_ROOT, split="test"):
return Flickr30k_Order(root_dir=root_dir, split=split, image_preprocess=image_preprocess, image_perturb_fn=image_perturb_fn, max_words=max_words,
download=download)
|