File size: 7,179 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import random
import numpy as np
from functools import partial
import torch.nn.functional as nnf
from torchvision import transforms as T

# A lot of the approaches here are inspired from the wonderful paper from O'Connor and Andreas 2021.
# https://github.com/lingo-mit/context-ablations

def get_text_perturb_fn(text_perturb_fn):
    if text_perturb_fn == "shuffle_nouns_and_adj":
        return shuffle_nouns_and_adj
    elif text_perturb_fn == "shuffle_allbut_nouns_and_adj":
        return shuffle_allbut_nouns_and_adj
    elif text_perturb_fn == "shuffle_within_trigrams":
        return shuffle_within_trigrams
    elif text_perturb_fn == "shuffle_all_words":
        return shuffle_all_words
    elif text_perturb_fn == "shuffle_trigrams":
        return shuffle_trigrams
    elif text_perturb_fn is None:
        return None
    else:
        print("Unknown text perturbation function: {}, returning None".format(text_perturb_fn))
        return None
    
    
def get_image_perturb_fn(image_perturb_fn):
    if image_perturb_fn == "shuffle_rows_4":
        return partial(shuffle_rows, n_rows=4)
    elif image_perturb_fn == "shuffle_patches_9":
        return partial(shuffle_patches, n_ratio=3)
    elif image_perturb_fn == "shuffle_cols_4":
        return partial(shuffle_columns, n_cols=4)
    elif image_perturb_fn is None:
        return None
    else:
        print("Unknown image perturbation function: {}, returning None".format(image_perturb_fn))
        return None
    


class TextShuffler:

    def __init__(self):
        import spacy
        self.nlp = spacy.load("en_core_web_sm")

    def shuffle_nouns_and_adj(self, ex):

        doc = self.nlp(ex)
        tokens = [token.text for token in doc]
        text = np.array(tokens)
        noun_idx = [i for i, token in enumerate(doc) if token.tag_ in ['NN', 'NNS', 'NNP', 'NNPS']]
        ## Finding adjectives
        adjective_idx = [i for i, token in enumerate(doc) if token.tag_ in ['JJ', 'JJR', 'JJS']]
        ## Shuffle the nouns of the text
        text[noun_idx] = np.random.permutation(text[noun_idx])
        ## Shuffle the adjectives of the text
        text[adjective_idx] = np.random.permutation(text[adjective_idx])

        return " ".join(text)

    def shuffle_all_words(self, ex):
        return " ".join(np.random.permutation(ex.split(" ")))


    def shuffle_allbut_nouns_and_adj(self, ex):
        doc = self.nlp(ex)
        tokens = [token.text for token in doc]
        text = np.array(tokens)
        noun_adj_idx = [i for i, token in enumerate(doc) if token.tag_ in ['NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS']]
        ## Finding adjectives

        else_idx = np.ones(text.shape[0])
        else_idx[noun_adj_idx] = 0

        else_idx = else_idx.astype(bool)
        ## Shuffle everything that are nouns or adjectives
        text[else_idx] = np.random.permutation(text[else_idx])
        return " ".join(text)


    def get_trigrams(self, sentence):
        # Taken from https://github.com/lingo-mit/context-ablations/blob/478fb18a9f9680321f0d37dc999ea444e9287cc0/code/transformers/src/transformers/data/data_augmentation.py
        trigrams = []
        trigram = []
        for i in range(len(sentence)):
            trigram.append(sentence[i])
            if i % 3 == 2:
                trigrams.append(trigram[:])
                trigram = []
        if trigram:
            trigrams.append(trigram)
        return trigrams

    def trigram_shuffle(self, sentence):
        trigrams = self.get_trigrams(sentence)
        for trigram in trigrams:
            random.shuffle(trigram)
        return " ".join([" ".join(trigram) for trigram in trigrams])


    def shuffle_within_trigrams(self, ex):
        import nltk
        tokens = nltk.word_tokenize(ex)
        shuffled_ex = self.trigram_shuffle(tokens)
        return shuffled_ex


    def shuffle_trigrams(self, ex):
        import nltk
        tokens = nltk.word_tokenize(ex)
        trigrams = self.get_trigrams(tokens)
        random.shuffle(trigrams)
        shuffled_ex = " ".join([" ".join(trigram) for trigram in trigrams])
        return shuffled_ex


def _handle_image_4shuffle(x):
    return_image = False
    if not isinstance(x, torch.Tensor):
        # print(f"x is not a tensor: {type(x)}. Trying to handle but fix this or I'll annoy you with this log")
        t = torch.tensor(np.array(x)).unsqueeze(dim=0).float()
        t = t.permute(0, 3, 1, 2)
        return_image = True
        return t, return_image
    if len(x.shape) != 4:
        #print("You did not send a tensor of shape NxCxWxH. Unsqueezing not but fix this or I'll annoy you with this log")
        return x.unsqueeze(dim=0), return_image
    else:
        # Good boi
        return x, return_image
        

def shuffle_rows(x, n_rows=7):
    """
    Shuffle the rows of the image tensor where each row has a size of 14 pixels.
    Tensor is of shape N x C x W x H
    """
    x, return_image = _handle_image_4shuffle(x)
    patch_size = x.shape[-2]//n_rows
    u = nnf.unfold(x, kernel_size=(patch_size, x.shape[-1]), stride=patch_size, padding=0)
    # permute the patches of each image in the batch
    pu = torch.cat([b_[:, torch.randperm(b_.shape[-1])][None,...] for b_ in u], dim=0)
    # fold the permuted patches back together
    f = nnf.fold(pu, x.shape[-2:], kernel_size=(patch_size, x.shape[-1]), stride=patch_size, padding=0)
    
    image = f.squeeze() # C W H
    if return_image:
        return T.ToPILImage()(image.type(torch.uint8))
    else:
        return image


def shuffle_columns(x, n_cols=7):
    """
    Shuffle the columns of the image tensor where we'll have n_cols columns.
    Tensor is of shape N x C x W x H
    """
    x, return_image = _handle_image_4shuffle(x)
    patch_size = x.shape[-1]//n_cols
    u = nnf.unfold(x, kernel_size=(x.shape[-2], patch_size), stride=patch_size, padding=0)
    # permute the patches of each image in the batch
    pu = torch.cat([b_[:, torch.randperm(b_.shape[-1])][None,...] for b_ in u], dim=0)
    # fold the permuted patches back together
    f = nnf.fold(pu, x.shape[-2:], kernel_size=(x.shape[-2], patch_size), stride=patch_size, padding=0)
    image = f.squeeze() # C W H
    if return_image:
        return T.ToPILImage()(image.type(torch.uint8))
    else:
        return image



def shuffle_patches(x, n_ratio=4):
    """
    Shuffle the rows of the image tensor where each row has a size of 14 pixels.
    Tensor is of shape N x C x W x H
    """
    x, return_image = _handle_image_4shuffle(x)
    patch_size_x = x.shape[-2]//n_ratio
    patch_size_y = x.shape[-1]//n_ratio
    u = nnf.unfold(x, kernel_size=(patch_size_x, patch_size_y), stride=(patch_size_x, patch_size_y), padding=0)
    # permute the patches of each image in the batch
    pu = torch.cat([b_[:, torch.randperm(b_.shape[-1])][None,...] for b_ in u], dim=0)
    # fold the permuted patches back together
    f = nnf.fold(pu, x.shape[-2:], kernel_size=(patch_size_x, patch_size_y), stride=(patch_size_x, patch_size_y), padding=0)
    image = f.squeeze() # C W H
    if return_image:
        return T.ToPILImage()(image.type(torch.uint8))
    else:
        return image