File size: 10,839 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import re
import json
import numpy as np

from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset
from torchvision.datasets.utils import download_url

from .constants import COCO_ROOT, FLICKR_ROOT
from .utils import AverageMeter


def pre_caption(caption,max_words=50):
    caption = re.sub(
        r"([.!\"()*#:;~])",       
        ' ',
        caption.lower(),
    )
    caption = re.sub(
        r"\s{2,}",
        ' ',
        caption,
    )
    caption = caption.rstrip('\n') 
    caption = caption.strip(' ')

    #truncate caption
    caption_words = caption.split(' ')
    if len(caption_words)>max_words:
        caption = ' '.join(caption_words[:max_words])
    
    return caption


class COCO_Retrieval(Dataset):
    def __init__(self, image_preprocess=None, root_dir=COCO_ROOT, max_words=30, split="test",
                 image_perturb_fn=None, download=False):  
        """
        COCO Retrieval Dataset.
        image_preprocess: image preprocessing function
        root_dir: The directory of the coco dataset. This directory should contain test2014 files.
        max_words: Cropping the caption to max_words.
        split: 'val' or 'test'
        image_perturb_fn: image perturbation function for patch permutation experiments.
        download: Whether to download the dataset if it does not exist.
        """
        self.root_dir = root_dir
        if not os.path.exists(root_dir):
            print("Directory for COCO could not be found!")
            if download:
                print("Downloading COCO now.")
                self.download()
            else:
                raise RuntimeError("Please either download the dataset by letting `--download` or specify the correct directory.")
        
        urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
                'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
        filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
        download_url(urls[split],root_dir)
        
        
        self.annotation = json.load(open(os.path.join(root_dir,filenames[split]),'r'))
        self.image_preprocess = image_preprocess
        self.image_perturb_fn = image_perturb_fn
        self.image_root = root_dir
        
        self.text = []
        self.image = []
        self.txt2img = {}
        self.img2txt = {}
        
        txt_id = 0
        for img_id, ann in enumerate(self.annotation):
            self.image.append(ann['image'])
            self.img2txt[img_id] = []
            for i, caption in enumerate(ann['caption']):
                self.text.append(pre_caption(caption,max_words))
                self.img2txt[img_id].append(txt_id)
                self.txt2img[txt_id] = img_id
                txt_id += 1
                                    
    def __len__(self):
        return len(self.annotation)
    
    def __getitem__(self, index):    
        image_path = os.path.join(self.image_root, self.annotation[index]['image'])        
        image = Image.open(image_path).convert('RGB')    
        
        if self.image_preprocess is not None: 
            image = self.image_preprocess(image)
          
        if self.image_perturb_fn is not None:
            image = self.image_perturb_fn(image) 
         
        return {"image": image, "idx": index}
    
    def download(self):
        import subprocess
        os.makedirs(self.root_dir, exist_ok=True)
        #subprocess.call(["wget", "http://images.cocodataset.org/zips/train2014.zip"], cwd=self.root_dir)
        #subprocess.call(["unzip", "train2014.zip"], cwd=self.root_dir)
        
        subprocess.call(["wget", "http://images.cocodataset.org/zips/val2014.zip"], cwd=self.root_dir)
        subprocess.call(["unzip", "val2014.zip"], cwd=self.root_dir)
        
        subprocess.call(["wget", "http://images.cocodataset.org/zips/test2014.zip"], cwd=self.root_dir)
        subprocess.call(["unzip", "test2014.zip"], cwd=self.root_dir)
        
    
    def evaluate_scores(self, scores):
        if isinstance(scores, tuple):
            scores_i2t = scores[0]
            scores_t2i = scores[1].T # Make it N_ims x N_text
    
        else:
            scores_t2i = scores
            scores_i2t = scores

        print(f"COCO results across {scores_i2t.shape} samples. ")
        prec_at_1 = AverageMeter()
        prec_at_5 = AverageMeter()

        # Text retrieval
        tqdm_iterator = tqdm(range(len(self.img2txt)))
        for i in tqdm_iterator:
            top5_captions = np.argsort(scores_i2t[i])[-5:]
            true_captions = self.img2txt[i]

            prec_at_1.update(len(set(true_captions) & set(top5_captions[-1:]))>0)
            prec_at_5.update(len(set(true_captions) & set(top5_captions))>0)

            tqdm_iterator.set_description(f"Text Retrieval Prec@1: {prec_at_1.avg:.3f}, Prec@5: {prec_at_5.avg:.3f}")

        # Image Retrieval
        image_prec_at_1 = AverageMeter()
        image_prec_at_5 = AverageMeter()

        tqdm_iterator = tqdm(range(len(self.txt2img)))
        for i in tqdm_iterator:
            top5_images = np.argsort(scores_t2i[:, i])[-5:]
            true_image = self.txt2img[i]

            image_prec_at_1.update(true_image in top5_images[-1:])
            image_prec_at_5.update(true_image in top5_images)

            tqdm_iterator.set_description(f"Image Retrieval Prec@1: {image_prec_at_1.avg:.3f}, Prec@5: {image_prec_at_5.avg:.3f}")

        records = [{"ImagePrec@1": image_prec_at_1.avg, "ImagePrec@5": image_prec_at_5.avg, "TextPrec@1": prec_at_1.avg, "TextPrec@5": prec_at_5.avg}]
        return records



class Flickr30k_Retrieval(Dataset):
    def __init__(self, image_preprocess, split, root_dir=FLICKR_ROOT, max_words=30,
                 image_perturb_fn=None, *args, **kwargs):  
        '''
        Flickr30k dataset for retrieval.
        image_preprocess: image preprocessing function
        root_dir: The directory of the coco dataset. This directory should contain test2014 files.
        max_words: Cropping the caption to max_words.
        split: 'val' or 'test'
        image_perturb_fn: image perturbation function for patch permutation experiments.
        download: Whether to download the dataset if it does not exist.
        '''
        urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_val.json',
                'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_test.json'}
        filenames = {'val':'flickr30k_val.json','test':'flickr30k_test.json'}
        
        if not os.path.exists(root_dir):
            print("Directory for Flickr30k could not be found!")
            flickr_url = "https://forms.illinois.edu/sec/229675"
            raise RuntimeError(f"You need to manually sign up and download the dataset from {flickr_url} and place it in the `root_dir`.")
        
        download_url(urls[split],root_dir)
        
        self.annotation = json.load(open(os.path.join(root_dir,filenames[split]),'r'))
        self.image_preprocess = image_preprocess
        self.image_perturb_fn = image_perturb_fn
        self.root_dir = root_dir
        
        self.text = []
        self.image = []
        self.txt2img = {}
        self.img2txt = {}
        
        txt_id = 0
        for img_id, ann in enumerate(self.annotation):
            self.image.append(ann['image'])
            self.img2txt[img_id] = []
            for i, caption in enumerate(ann['caption']):
                self.text.append(pre_caption(caption,max_words))
                self.img2txt[img_id].append(txt_id)
                self.txt2img[txt_id] = img_id
                txt_id += 1
                                    
    def __len__(self):
        return len(self.annotation)
    
    def __getitem__(self, index):    
        image_path = os.path.join(self.root_dir, self.annotation[index]['image'])        
        image = Image.open(image_path).convert('RGB')   
        if self.image_preprocess is not None: 
            image = self.image_preprocess(image)  
        if self.image_perturb_fn is not None:
            image = self.image_perturb_fn(image) 
        
        return {"image": image, "idx": index}
    
    def evaluate_scores(self, scores):
        if isinstance(scores, tuple):
            scores_i2t = scores[0]
            scores_t2i = scores[1].T # Make it N_ims x N_text
    
        else:
            scores_t2i = scores
            scores_i2t = scores

        print(f"Flickr30k Retrieval results across {scores_i2t.shape} samples. ")
        prec_at_1 = AverageMeter()
        prec_at_5 = AverageMeter()

        # Text retrieval
        tqdm_iterator = tqdm(range(len(self.img2txt)))
        for i in tqdm_iterator:
            top5_captions = np.argsort(scores_i2t[i])[-5:]
            true_captions = self.img2txt[i]

            prec_at_1.update(len(set(true_captions) & set(top5_captions[-1:]))>0)
            prec_at_5.update(len(set(true_captions) & set(top5_captions))>0)

            tqdm_iterator.set_description(f"Text Retrieval Prec@1: {prec_at_1.avg:.3f}, Prec@5: {prec_at_5.avg:.3f}")

        # Image Retrieval
        image_prec_at_1 = AverageMeter()
        image_prec_at_5 = AverageMeter()

        tqdm_iterator = tqdm(range(len(self.txt2img)))
        for i in tqdm_iterator:
            top5_images = np.argsort(scores_t2i[:, i])[-5:]
            true_image = self.txt2img[i]

            image_prec_at_1.update(true_image in top5_images[-1:])
            image_prec_at_5.update(true_image in top5_images)

            tqdm_iterator.set_description(f"Image Retrieval Prec@1: {image_prec_at_1.avg:.3f}, Prec@5: {image_prec_at_5.avg:.3f}")

        records = [{"ImagePrec@1": image_prec_at_1.avg, "ImagePrec@5": image_prec_at_5.avg, "TextPrec@1": prec_at_1.avg, "TextPrec@5": prec_at_5.avg}]
        return records
    
    def download(self):
        raise NotImplementedError("Flickr30k dataset is not available for download.")



def get_coco_retrieval(image_preprocess, image_perturb_fn, text_perturb_fn, max_words=30, download=False, root_dir=COCO_ROOT, split="test"):
    dataset = COCO_Retrieval(root_dir=root_dir, split=split, image_preprocess=image_preprocess, image_perturb_fn=image_perturb_fn, max_words=max_words, 
                            download=download)
    return dataset


def get_flickr30k_retrieval(image_preprocess, image_perturb_fn, text_perturb_fn, max_words=30, download=False, root_dir=FLICKR_ROOT, split="test"):
    dataset = Flickr30k_Retrieval(root_dir=root_dir, split=split, image_preprocess=image_preprocess, image_perturb_fn=image_perturb_fn, max_words=max_words, 
                            download=download)
    return dataset