Spaces:
Runtime error
Runtime error
File size: 10,839 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import re
import json
import numpy as np
from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset
from torchvision.datasets.utils import download_url
from .constants import COCO_ROOT, FLICKR_ROOT
from .utils import AverageMeter
def pre_caption(caption,max_words=50):
caption = re.sub(
r"([.!\"()*#:;~])",
' ',
caption.lower(),
)
caption = re.sub(
r"\s{2,}",
' ',
caption,
)
caption = caption.rstrip('\n')
caption = caption.strip(' ')
#truncate caption
caption_words = caption.split(' ')
if len(caption_words)>max_words:
caption = ' '.join(caption_words[:max_words])
return caption
class COCO_Retrieval(Dataset):
def __init__(self, image_preprocess=None, root_dir=COCO_ROOT, max_words=30, split="test",
image_perturb_fn=None, download=False):
"""
COCO Retrieval Dataset.
image_preprocess: image preprocessing function
root_dir: The directory of the coco dataset. This directory should contain test2014 files.
max_words: Cropping the caption to max_words.
split: 'val' or 'test'
image_perturb_fn: image perturbation function for patch permutation experiments.
download: Whether to download the dataset if it does not exist.
"""
self.root_dir = root_dir
if not os.path.exists(root_dir):
print("Directory for COCO could not be found!")
if download:
print("Downloading COCO now.")
self.download()
else:
raise RuntimeError("Please either download the dataset by letting `--download` or specify the correct directory.")
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
download_url(urls[split],root_dir)
self.annotation = json.load(open(os.path.join(root_dir,filenames[split]),'r'))
self.image_preprocess = image_preprocess
self.image_perturb_fn = image_perturb_fn
self.image_root = root_dir
self.text = []
self.image = []
self.txt2img = {}
self.img2txt = {}
txt_id = 0
for img_id, ann in enumerate(self.annotation):
self.image.append(ann['image'])
self.img2txt[img_id] = []
for i, caption in enumerate(ann['caption']):
self.text.append(pre_caption(caption,max_words))
self.img2txt[img_id].append(txt_id)
self.txt2img[txt_id] = img_id
txt_id += 1
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
image = Image.open(image_path).convert('RGB')
if self.image_preprocess is not None:
image = self.image_preprocess(image)
if self.image_perturb_fn is not None:
image = self.image_perturb_fn(image)
return {"image": image, "idx": index}
def download(self):
import subprocess
os.makedirs(self.root_dir, exist_ok=True)
#subprocess.call(["wget", "http://images.cocodataset.org/zips/train2014.zip"], cwd=self.root_dir)
#subprocess.call(["unzip", "train2014.zip"], cwd=self.root_dir)
subprocess.call(["wget", "http://images.cocodataset.org/zips/val2014.zip"], cwd=self.root_dir)
subprocess.call(["unzip", "val2014.zip"], cwd=self.root_dir)
subprocess.call(["wget", "http://images.cocodataset.org/zips/test2014.zip"], cwd=self.root_dir)
subprocess.call(["unzip", "test2014.zip"], cwd=self.root_dir)
def evaluate_scores(self, scores):
if isinstance(scores, tuple):
scores_i2t = scores[0]
scores_t2i = scores[1].T # Make it N_ims x N_text
else:
scores_t2i = scores
scores_i2t = scores
print(f"COCO results across {scores_i2t.shape} samples. ")
prec_at_1 = AverageMeter()
prec_at_5 = AverageMeter()
# Text retrieval
tqdm_iterator = tqdm(range(len(self.img2txt)))
for i in tqdm_iterator:
top5_captions = np.argsort(scores_i2t[i])[-5:]
true_captions = self.img2txt[i]
prec_at_1.update(len(set(true_captions) & set(top5_captions[-1:]))>0)
prec_at_5.update(len(set(true_captions) & set(top5_captions))>0)
tqdm_iterator.set_description(f"Text Retrieval Prec@1: {prec_at_1.avg:.3f}, Prec@5: {prec_at_5.avg:.3f}")
# Image Retrieval
image_prec_at_1 = AverageMeter()
image_prec_at_5 = AverageMeter()
tqdm_iterator = tqdm(range(len(self.txt2img)))
for i in tqdm_iterator:
top5_images = np.argsort(scores_t2i[:, i])[-5:]
true_image = self.txt2img[i]
image_prec_at_1.update(true_image in top5_images[-1:])
image_prec_at_5.update(true_image in top5_images)
tqdm_iterator.set_description(f"Image Retrieval Prec@1: {image_prec_at_1.avg:.3f}, Prec@5: {image_prec_at_5.avg:.3f}")
records = [{"ImagePrec@1": image_prec_at_1.avg, "ImagePrec@5": image_prec_at_5.avg, "TextPrec@1": prec_at_1.avg, "TextPrec@5": prec_at_5.avg}]
return records
class Flickr30k_Retrieval(Dataset):
def __init__(self, image_preprocess, split, root_dir=FLICKR_ROOT, max_words=30,
image_perturb_fn=None, *args, **kwargs):
'''
Flickr30k dataset for retrieval.
image_preprocess: image preprocessing function
root_dir: The directory of the coco dataset. This directory should contain test2014 files.
max_words: Cropping the caption to max_words.
split: 'val' or 'test'
image_perturb_fn: image perturbation function for patch permutation experiments.
download: Whether to download the dataset if it does not exist.
'''
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_val.json',
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_test.json'}
filenames = {'val':'flickr30k_val.json','test':'flickr30k_test.json'}
if not os.path.exists(root_dir):
print("Directory for Flickr30k could not be found!")
flickr_url = "https://forms.illinois.edu/sec/229675"
raise RuntimeError(f"You need to manually sign up and download the dataset from {flickr_url} and place it in the `root_dir`.")
download_url(urls[split],root_dir)
self.annotation = json.load(open(os.path.join(root_dir,filenames[split]),'r'))
self.image_preprocess = image_preprocess
self.image_perturb_fn = image_perturb_fn
self.root_dir = root_dir
self.text = []
self.image = []
self.txt2img = {}
self.img2txt = {}
txt_id = 0
for img_id, ann in enumerate(self.annotation):
self.image.append(ann['image'])
self.img2txt[img_id] = []
for i, caption in enumerate(ann['caption']):
self.text.append(pre_caption(caption,max_words))
self.img2txt[img_id].append(txt_id)
self.txt2img[txt_id] = img_id
txt_id += 1
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
image_path = os.path.join(self.root_dir, self.annotation[index]['image'])
image = Image.open(image_path).convert('RGB')
if self.image_preprocess is not None:
image = self.image_preprocess(image)
if self.image_perturb_fn is not None:
image = self.image_perturb_fn(image)
return {"image": image, "idx": index}
def evaluate_scores(self, scores):
if isinstance(scores, tuple):
scores_i2t = scores[0]
scores_t2i = scores[1].T # Make it N_ims x N_text
else:
scores_t2i = scores
scores_i2t = scores
print(f"Flickr30k Retrieval results across {scores_i2t.shape} samples. ")
prec_at_1 = AverageMeter()
prec_at_5 = AverageMeter()
# Text retrieval
tqdm_iterator = tqdm(range(len(self.img2txt)))
for i in tqdm_iterator:
top5_captions = np.argsort(scores_i2t[i])[-5:]
true_captions = self.img2txt[i]
prec_at_1.update(len(set(true_captions) & set(top5_captions[-1:]))>0)
prec_at_5.update(len(set(true_captions) & set(top5_captions))>0)
tqdm_iterator.set_description(f"Text Retrieval Prec@1: {prec_at_1.avg:.3f}, Prec@5: {prec_at_5.avg:.3f}")
# Image Retrieval
image_prec_at_1 = AverageMeter()
image_prec_at_5 = AverageMeter()
tqdm_iterator = tqdm(range(len(self.txt2img)))
for i in tqdm_iterator:
top5_images = np.argsort(scores_t2i[:, i])[-5:]
true_image = self.txt2img[i]
image_prec_at_1.update(true_image in top5_images[-1:])
image_prec_at_5.update(true_image in top5_images)
tqdm_iterator.set_description(f"Image Retrieval Prec@1: {image_prec_at_1.avg:.3f}, Prec@5: {image_prec_at_5.avg:.3f}")
records = [{"ImagePrec@1": image_prec_at_1.avg, "ImagePrec@5": image_prec_at_5.avg, "TextPrec@1": prec_at_1.avg, "TextPrec@5": prec_at_5.avg}]
return records
def download(self):
raise NotImplementedError("Flickr30k dataset is not available for download.")
def get_coco_retrieval(image_preprocess, image_perturb_fn, text_perturb_fn, max_words=30, download=False, root_dir=COCO_ROOT, split="test"):
dataset = COCO_Retrieval(root_dir=root_dir, split=split, image_preprocess=image_preprocess, image_perturb_fn=image_perturb_fn, max_words=max_words,
download=download)
return dataset
def get_flickr30k_retrieval(image_preprocess, image_perturb_fn, text_perturb_fn, max_words=30, download=False, root_dir=FLICKR_ROOT, split="test"):
dataset = Flickr30k_Retrieval(root_dir=root_dir, split=split, image_preprocess=image_preprocess, image_perturb_fn=image_perturb_fn, max_words=max_words,
download=download)
return dataset
|