Spaces:
Runtime error
Runtime error
File size: 9,495 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import json
import webdataset as wds
from tqdm import tqdm
from PIL import Image
import torch
import numpy as np
import os
import time
import cv2
import random
import math
from open_flamingo.eval.task.utils import (
get_object_from_text,
is_correct,
_eval_text_image,
get_bbox,
get_iou,
)
DATASET = "/gpfs/u/home/LMCG/LMCGljnn/scratch/code/COLA/data/COLA_multiobjects_matching_benchmark.json"
VG_ROOT = "/gpfs/u/home/LMCG/LMCGljnn/scratch/datasets/raw/vg/VG_100K"
def get_score(image, text, model, tokenizer, image_processor, vis_embed_size):
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
object_token_id = tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
text = text.split("#")
obj_A = text[0].strip().split(" ")
relation = text[1].strip()
obj_B = text[2].strip().split(" ")
if "computer mouse" not in text[0].strip():
attrAs = obj_A[:-1]
nounA = obj_A[-1]
else:
attrAs = obj_A[:-2]
nounA = " ".join(obj_A[-2:])
if "computer mouse" not in text[2].strip():
attrBs = obj_B[:-1]
nounB = obj_B[-1]
else:
attrBs = obj_B[:-2]
nounB = " ".join(obj_B[-2:])
# print("="*80)
# print(attrAs, nounA)
# print(attrBs, nounB)
# print(relation)
# print("="*80)
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
prompt1 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|>the {nounA}<|#endofobject#|><|#visual#|>"]
boxes, scores = get_bbox(None, batch_images, prompt1, model, tokenizer, media_token_id, prebox_token_id, return_all=True)
# open_cv_image = np.array(image)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# for pre_box in boxes:
# open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), 2)
box_ppl = []
box_attr_losses = []
for box in boxes:
losses = []
for attrA in attrAs:
prompt2 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|><|#previsual#|><|#prebox#|><|#object#|> the {attrA} {nounA}"]
encodings = tokenizer(
prompt2,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=512,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
vision_x = batch_images.cuda()
lang_x = input_ids.cuda()
attention_mask = attention_mask.cuda()
labels = lang_x.clone()
start_idx = (labels == object_token_id).nonzero()[-1, -1]
labels[0, :start_idx+1] = -100
added_bbox_list = [torch.tensor(box / 224.0).cuda().unsqueeze(0)]
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
outputs = model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
labels=labels,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list,
add_box=added_bbox_list is not None,
relations=None,
)
loss = outputs.loss
loss = (loss.sum() / (loss != 0).sum()).item()
losses.append(loss)
avg_ppl = np.array(losses).mean()
box_ppl.append(avg_ppl)
box_attr_losses.append(losses)
fit_idx = np.array(box_ppl).argmin()
fit_box = boxes[fit_idx]
fit_attr = attrAs[np.array(box_attr_losses[fit_idx]).argmin()]
first_ppl = min(box_ppl)
# open_cv_image = cv2.rectangle(open_cv_image, fit_box[:2].astype(int), fit_box[2:].astype(int), (255, 0, 0), 2)
prompt3 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|>the {fit_attr} {nounA}<|#endofobject#|><|#visual#|><|#box#|><|#endofobject#|> is {relation}<|#object#|><|#previsual#|>"]
boxes, scores = get_bbox([torch.tensor(fit_box / 224).cuda().unsqueeze(0)], batch_images, prompt3, model, tokenizer, media_token_id, prebox_token_id, return_all=True)
# for i, pre_box in enumerate(boxes):
# open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 0, 255), i+1)
# cv2.imwrite(f"Atest.png", open_cv_image)
box_ppl = []
for box in boxes:
losses = []
for attrB in attrBs:
prompt4 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|>the {fit_attr} {nounA}<|#endofobject#|><|#visual#|><|#box#|><|#endofobject#|> is {relation}<|#object#|><|#previsual#|><|#prebox#|><|#object#|> the {attrB} {nounB}"]
encodings = tokenizer(
prompt4,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=512,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
vision_x = batch_images.cuda()
lang_x = input_ids.cuda()
attention_mask = attention_mask.cuda()
labels = lang_x.clone()
start_idx = (labels == object_token_id).nonzero()[-1, -1]
labels[0, :start_idx+1] = -100
added_bbox_list = [torch.tensor(fit_box / 224.0).cuda().unsqueeze(0), torch.tensor(box / 224.0).cuda().unsqueeze(0)]
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
outputs = model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
labels=labels,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list,
add_box=added_bbox_list is not None,
relations=None,
)
loss = outputs.loss
loss = (loss.sum() / (loss != 0).sum()).item()
losses.append(loss)
avg_ppl = np.array(losses).mean()
box_ppl.append(avg_ppl)
second_ppl = (np.array(box_ppl) * np.array(scores)).sum() / sum(scores)
return (first_ppl + second_ppl) / 2
def evaluate_cola(
model,
tokenizer,
image_processor,
vis_embed_size=None,
rank=0,
world_size=1,
id=0,
debug=False,
):
dataset_name = "cola"
dataset = json.load(open(DATASET))
model = model.cuda().eval()
correct = 0
total = 0
pbar = tqdm(dataset, disable=(rank != 0))
for ii, sample in enumerate(pbar):
if ii % world_size != rank:
continue
image1 = Image.open(os.path.join(VG_ROOT, os.path.basename(sample[0]))).convert("RGB").resize((224, 224))
text1 = sample[1]
image2 = Image.open(os.path.join(VG_ROOT, os.path.basename(sample[2]))).convert("RGB").resize((224, 224))
text2 = sample[3]
score11 = -get_score(image1, text1, model, tokenizer, image_processor, vis_embed_size)
score12 = -get_score(image1, text2, model, tokenizer, image_processor, vis_embed_size)
score21 = -get_score(image2, text1, model, tokenizer, image_processor, vis_embed_size)
score22 = -get_score(image2, text2, model, tokenizer, image_processor, vis_embed_size)
if rank == 0:
tqdm.write(f"{score11:.2f} {score12:.2f} {score21:.2f} {score22:.2f}")
if score11 > score21 and score22 > score12:
correct += 1
total += 1
pbar.set_description(f"{correct / total:.2f}")
print(rank, correct / total)
with open(f"{dataset_name}_results_part{rank}_{id}.json", "w") as f:
f.write(json.dumps([total, correct]))
if world_size > 1:
torch.distributed.barrier()
if rank == 0:
total = 0
correct = 0
print(f"evaluate on rank {rank}. world size is {world_size}")
for rank_i in range(world_size):
[total_part, correct_part] = json.load(open(f"{dataset_name}_results_part{rank_i}_{id}.json"))
os.remove(f"{dataset_name}_results_part{rank_i}_{id}.json")
total += total_part
correct += correct_part
score = correct / total
print("score:", score)
with open(os.path.join("eval_results", f"{dataset_name}_{model.expr_name}_{model.step_num}_{int(time.time())}_{score}_{total}"), "w") as f:
pass
else:
score = 0.0
if world_size > 1:
torch.distributed.barrier()
return score
if __name__ == "__main__":
evaluate_cola(None, None, None)
|