File size: 9,495 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import json
import webdataset as wds
from tqdm import tqdm
from PIL import Image
import torch
import numpy as np
import os
import time
import cv2
import random
import math
from open_flamingo.eval.task.utils import (
    get_object_from_text,
    is_correct,
    _eval_text_image,
    get_bbox,
    get_iou,
)
DATASET = "/gpfs/u/home/LMCG/LMCGljnn/scratch/code/COLA/data/COLA_multiobjects_matching_benchmark.json"
VG_ROOT = "/gpfs/u/home/LMCG/LMCGljnn/scratch/datasets/raw/vg/VG_100K"

def get_score(image, text, model, tokenizer, image_processor, vis_embed_size):
    media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
    prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
    object_token_id = tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
    text = text.split("#")
    obj_A = text[0].strip().split(" ")
    relation = text[1].strip()
    obj_B = text[2].strip().split(" ")
    if "computer mouse" not in text[0].strip():
        attrAs = obj_A[:-1]
        nounA = obj_A[-1]
    else:
        attrAs = obj_A[:-2]
        nounA = " ".join(obj_A[-2:])
    if "computer mouse" not in text[2].strip():
        attrBs = obj_B[:-1]
        nounB = obj_B[-1]
    else:
        attrBs = obj_B[:-2]
        nounB = " ".join(obj_B[-2:])
    # print("="*80)
    # print(attrAs, nounA)
    # print(attrBs, nounB)
    # print(relation)
    # print("="*80)
    batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)


    prompt1 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|>the {nounA}<|#endofobject#|><|#visual#|>"]
    boxes, scores = get_bbox(None, batch_images, prompt1, model, tokenizer, media_token_id, prebox_token_id, return_all=True)


    # open_cv_image = np.array(image)
    # open_cv_image = open_cv_image[:, :, ::-1].copy()
    # for pre_box in boxes:
    #     open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), 2)

    box_ppl = []
    box_attr_losses = []
    for box in boxes:
        losses = []
        for attrA in attrAs:
            prompt2 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|><|#previsual#|><|#prebox#|><|#object#|> the {attrA} {nounA}"]
            encodings = tokenizer(
                prompt2,
                padding="longest",
                truncation=True,
                return_tensors="pt",
                max_length=512,
            )
            input_ids = encodings["input_ids"]
            attention_mask = encodings["attention_mask"]
            image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
            image_start_index_list = [[x] for x in image_start_index_list]
            image_nums = [1] * len(input_ids)
            vision_x = batch_images.cuda()
            lang_x = input_ids.cuda()
            attention_mask = attention_mask.cuda()
            labels = lang_x.clone()
            start_idx = (labels == object_token_id).nonzero()[-1, -1]
            labels[0, :start_idx+1] = -100
            added_bbox_list = [torch.tensor(box / 224.0).cuda().unsqueeze(0)]
            with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
                outputs = model(
                    vision_x=vision_x,
                    lang_x=lang_x,
                    attention_mask=attention_mask,
                    labels=labels,
                    image_nums=image_nums,
                    image_start_index_list=image_start_index_list,
                    added_bbox_list=added_bbox_list,
                    add_box=added_bbox_list is not None,
                    relations=None,
                )
            loss = outputs.loss
            loss = (loss.sum() / (loss != 0).sum()).item()
            losses.append(loss)
        avg_ppl = np.array(losses).mean()
        box_ppl.append(avg_ppl)
        box_attr_losses.append(losses)
    fit_idx = np.array(box_ppl).argmin()
    fit_box = boxes[fit_idx]
    fit_attr = attrAs[np.array(box_attr_losses[fit_idx]).argmin()]
    first_ppl = min(box_ppl)

    # open_cv_image = cv2.rectangle(open_cv_image, fit_box[:2].astype(int), fit_box[2:].astype(int), (255, 0, 0), 2)


    prompt3 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|>the {fit_attr} {nounA}<|#endofobject#|><|#visual#|><|#box#|><|#endofobject#|> is {relation}<|#object#|><|#previsual#|>"]
    boxes, scores = get_bbox([torch.tensor(fit_box / 224).cuda().unsqueeze(0)], batch_images, prompt3, model, tokenizer, media_token_id, prebox_token_id, return_all=True)
    # for i, pre_box in enumerate(boxes):
    #     open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 0, 255), i+1)
    # cv2.imwrite(f"Atest.png", open_cv_image)

    box_ppl = []
    for box in boxes:
        losses = []
        for attrB in attrBs:
            prompt4 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|>the {fit_attr} {nounA}<|#endofobject#|><|#visual#|><|#box#|><|#endofobject#|> is {relation}<|#object#|><|#previsual#|><|#prebox#|><|#object#|> the {attrB} {nounB}"]
            encodings = tokenizer(
                prompt4,
                padding="longest",
                truncation=True,
                return_tensors="pt",
                max_length=512,
            )
            input_ids = encodings["input_ids"]
            attention_mask = encodings["attention_mask"]
            image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
            image_start_index_list = [[x] for x in image_start_index_list]
            image_nums = [1] * len(input_ids)
            vision_x = batch_images.cuda()
            lang_x = input_ids.cuda()
            attention_mask = attention_mask.cuda()
            labels = lang_x.clone()
            start_idx = (labels == object_token_id).nonzero()[-1, -1]
            labels[0, :start_idx+1] = -100
            added_bbox_list = [torch.tensor(fit_box / 224.0).cuda().unsqueeze(0), torch.tensor(box / 224.0).cuda().unsqueeze(0)]
            with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
                outputs = model(
                    vision_x=vision_x,
                    lang_x=lang_x,
                    attention_mask=attention_mask,
                    labels=labels,
                    image_nums=image_nums,
                    image_start_index_list=image_start_index_list,
                    added_bbox_list=added_bbox_list,
                    add_box=added_bbox_list is not None,
                    relations=None,
                )
            loss = outputs.loss
            loss = (loss.sum() / (loss != 0).sum()).item()
            losses.append(loss)
        avg_ppl = np.array(losses).mean()
        box_ppl.append(avg_ppl)
    second_ppl = (np.array(box_ppl) * np.array(scores)).sum() / sum(scores)
    return (first_ppl + second_ppl) / 2


def evaluate_cola(
    model,
    tokenizer,
    image_processor,
    vis_embed_size=None,
    rank=0,
    world_size=1,
    id=0,
    debug=False,
):
    dataset_name = "cola"
    dataset = json.load(open(DATASET))
    model = model.cuda().eval()
    correct = 0
    total = 0
    pbar = tqdm(dataset, disable=(rank != 0))
    for ii, sample in enumerate(pbar):
        if ii % world_size != rank:
            continue
        image1 = Image.open(os.path.join(VG_ROOT, os.path.basename(sample[0]))).convert("RGB").resize((224, 224))
        text1 = sample[1]
        image2 = Image.open(os.path.join(VG_ROOT, os.path.basename(sample[2]))).convert("RGB").resize((224, 224))
        text2 = sample[3]
        score11 = -get_score(image1, text1, model, tokenizer, image_processor, vis_embed_size)
        score12 = -get_score(image1, text2, model, tokenizer, image_processor, vis_embed_size)
        score21 = -get_score(image2, text1, model, tokenizer, image_processor, vis_embed_size)
        score22 = -get_score(image2, text2, model, tokenizer, image_processor, vis_embed_size)
        if rank == 0:
            tqdm.write(f"{score11:.2f} {score12:.2f} {score21:.2f} {score22:.2f}")
        if score11 > score21 and score22 > score12:
            correct += 1
        total += 1
        pbar.set_description(f"{correct / total:.2f}")
    print(rank, correct / total)

    with open(f"{dataset_name}_results_part{rank}_{id}.json", "w") as f:
        f.write(json.dumps([total, correct]))
    if world_size > 1:
        torch.distributed.barrier()
    if rank == 0:
        total = 0
        correct = 0
        print(f"evaluate on rank {rank}. world size is {world_size}")
        for rank_i in range(world_size):
            [total_part, correct_part] = json.load(open(f"{dataset_name}_results_part{rank_i}_{id}.json"))
            os.remove(f"{dataset_name}_results_part{rank_i}_{id}.json")
            total += total_part
            correct += correct_part
        score = correct / total
        print("score:", score)
        with open(os.path.join("eval_results", f"{dataset_name}_{model.expr_name}_{model.step_num}_{int(time.time())}_{score}_{total}"), "w") as f:
            pass
    else:
        score = 0.0
    if world_size > 1:
        torch.distributed.barrier()
    return score

if __name__ == "__main__":
    evaluate_cola(None, None, None)