File size: 11,314 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from torch.utils.data import Dataset
import json
from PIL import Image
import os
import torch
import more_itertools
from tqdm import tqdm
import time
from vqa_metric import compute_gqa_accuracy
import string
import uuid
import numpy as np
import cv2
from open_flamingo.eval.task.utils import get_bbox

class GQADataset(Dataset):
    def __init__(
        self,
        image_dir_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/datasets/raw/gqa/images",
        annotations_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/datasets/raw/gqa/testdev_balanced_questions.json",
    ):
        annotations = json.load(open(annotations_path))
        self.questions = []
        self.answers = []
        self.image_paths = []
        self.question_ids = []
        for anno_id in annotations:
            question = annotations[anno_id]["question"]
            imageId = annotations[anno_id]["imageId"]
            answer = annotations[anno_id]["answer"]
            self.questions.append(question)
            self.answers.append(answer)
            self.image_paths.append(os.path.join(image_dir_path, "{}.jpg".format(imageId)))
            self.question_ids.append(anno_id)
            # print(annotations[anno_id]["types"])
        self.vqa_dataset = "gqa"

    def __len__(self):
        return len(self.questions)

    def __getitem__(self, idx):
        question = self.questions[idx]
        question_id = self.question_ids[idx]
        answer = self.answers[idx]
        img_path = self.image_paths[idx]
        image = Image.open(img_path)
        return {
            "image": image,
            "question": question,
            "answers": answer,
            "question_id": question_id,
        }


def prepare_batch_images(batch, image_processor):
    batch_images = None
    for b in batch:
        b_image = image_processor(b["image"]).unsqueeze(0).unsqueeze(1).unsqueeze(0)
        if batch_images is None:
            batch_images = b_image
        else:
            batch_images = torch.cat([batch_images, b_image], dim=0)
    return batch_images



def evaluate_gqa(
    model,
    tokenizer,
    image_processor,
    batch_size=1,
    vis_embed_size=None,
    rank=0,
    world_size=1,
    id=0,
):
    """
    Evaluate a model on VQA datasets. Currently supports VQA v2.0.

    Args:
        model (nn.Module): model to evaluate
        tokenizer (transformers.PreTrainedTokenizer): tokenizer for the model
        image_processor : image processor for the model
        batch_size (int): batch size
        image_dir_path (str): path to image directory
        questions_json_path (str): path to questions json file
        annotations_json_path (str): path to annotations json file
        seed (int, optional): random seed. Defaults to 42.
        max_generation_length (int, optional): max generation length. Defaults to 5.
        num_beams (int, optional): number of beams to use for beam search. Defaults to 3.
        length_penalty (float, optional): length penalty for beam search. Defaults to -2.0.
        num_samples (int, optional): number of samples to evaluate on. Defaults to 5000 samples.
        query_set_size (int, optional): size of the query set. Defaults to 2048.
        num_shots (int, optional): number of shots to use. Defaults to 8.
        device (int, optional): device to use. Defaults to -1 (cpu).
        num_workers (int, optional): number of workers to use. Defaults to 4.
        vqa_dataset (string): type of vqa dataset: currently supports vqa, ok_vqa. Defaults to vqa.
    Returns:
        float: accuracy score
    """
    assert batch_size == 1
    vqa_dataset = "gqa"
    eval_dataset = GQADataset()
    object_token_id = tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
    endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
    prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
    media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
    endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
    pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
    bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
    def get_prompt(sample):
        return f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>Question: {sample['question'].strip()} Short answer:"
    model.eval().cuda()
    lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
    predictions = []
    if batch_size != 1:
        tokenizer.padding_side = "left"
    if world_size > 1:
        torch.distributed.barrier()
    this_tot = 0
    for ii, batch in enumerate(more_itertools.chunked(
        tqdm(eval_dataset, desc="Running inference", disable=(rank != 0)), batch_size,
    )):
        if ii % world_size != rank:
            continue
        batch[0]["image"] = batch[0]["image"].resize((224, 224))
        batch_images = prepare_batch_images(
            batch=batch,
            image_processor=image_processor,
        ).cuda()
        batch_text = [get_prompt(s) for s in batch]
        encodings = tokenizer(
            batch_text,
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=2000,
        )
        input_ids = encodings["input_ids"].cuda()
        attention_mask = encodings["attention_mask"].cuda()
        image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
        image_start_index_list = [[x] for x in image_start_index_list]
        image_nums = [1] * len(input_ids)
        with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
            outputs = model.generate(
                batch_images,
                input_ids,
                attention_mask=attention_mask,
                max_new_tokens=10,
                min_length=1,
                num_beams=1,
                # length_penalty=0,
                image_start_index_list=image_start_index_list,
                image_nums=image_nums,
                added_bbox_list=None,
                return_dict_in_generate=True,
                output_scores=True,
            )
        scores = outputs.scores
        outputs = outputs.sequences[:, len(input_ids[0]) :]
        if object_token_id in scores[0][0].sort(descending=True).indices[:5]:
            sample = batch[0]
            # print("="*80)
            # print("sample:", batch, scores[0][0].sort(descending=True).indices[:10].tolist().index(object_token_id))
            prompt1 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>Question: {sample['question'].strip()} Short answer:<|#object#|><|#previsual#|>"]
            boxes, scores = get_bbox(None, batch_images, prompt1, model, tokenizer, media_token_id, prebox_token_id, return_all=True)
            # open_cv_image = np.array(sample["image"])
            # open_cv_image = open_cv_image[:, :, ::-1].copy()
            # cv2.imwrite(f"Atest_ori.png", open_cv_image)
            # open_cv_image = cv2.rectangle(open_cv_image, boxes[0][:2].astype(int), boxes[0][2:].astype(int), (0, 255, 0), 2)
            # print(scores)
            # cv2.imwrite(f"Atest.png", open_cv_image)
            if boxes is not None and len(boxes) > 0:
                prompt2 = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>Question: {sample['question'].strip()} Short answer: it is<|#object#|><|#previsual#|><|#prebox#|><|#object#|> a"]
                encodings = tokenizer(
                    prompt2,
                    return_tensors="pt",
                    padding="longest",
                    truncation=True,
                    max_length=2000,
                )
                input_ids = encodings["input_ids"].cuda()
                attention_mask = encodings["attention_mask"].cuda()
                image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
                image_start_index_list = [[x] for x in image_start_index_list]
                image_nums = [1] * len(input_ids)
                added_bbox_list = [torch.tensor(boxes[0]/224.0).cuda().unsqueeze(0).clamp(0, 0.99)]
                with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
                    outputs = model.generate(
                        batch_images,
                        input_ids,
                        attention_mask=attention_mask,
                        max_new_tokens=10,
                        min_length=1,
                        num_beams=1,
                        image_start_index_list=image_start_index_list,
                        image_nums=image_nums,
                        added_bbox_list=added_bbox_list,
                        eos_token_id=(endofobject_token_id),
                    )
                outputs = outputs[:, len(input_ids[0]) :]
                # print("previsual===>{}".format(tokenizer.decode(outputs[0], skip_special_tokens=True).strip().lower().strip(string.punctuation+" ")))

        # postprocess begin
        new_predictions = [
            out.strip().lower().strip(string.punctuation+" ") for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ]
        this_tot += 1
        predictions.extend(
            [
                {"answer": p, "question_id": sample["question_id"], "_question": sample["question"], "answers": sample["answers"]}
                for p, sample in zip(new_predictions, batch)
            ]
        )
    with open(f"{vqa_dataset}_{lang_encoder_name}_results_part{rank}_{id}.json", "w") as f:
        f.write(json.dumps(predictions))
    print("save to", f"{vqa_dataset}_{lang_encoder_name}_results_part{rank}_{id}.json")

    time.sleep(10)
    if world_size > 1:
        torch.distributed.barrier()
    if rank == 0:
        print(f"evaluate on rank {rank}. world size is {world_size}")
        predictions = []
        for rank_i in range(world_size):
            print("load", f"{vqa_dataset}_{lang_encoder_name}_results_part{rank_i}_{id}.json")
            predictions.extend(json.load(open(f"{vqa_dataset}_{lang_encoder_name}_results_part{rank_i}_{id}.json")))
            os.remove(f"{vqa_dataset}_{lang_encoder_name}_results_part{rank_i}_{id}.json")
        print("num:", len(predictions))
        # save the predictions to a temporary file
        random_uuid = str(uuid.uuid4())
        with open(f"{vqa_dataset}results_{random_uuid}.json", "w") as f:
            f.write(json.dumps(predictions, indent=4))

        acc = compute_gqa_accuracy(predictions)
        print(vqa_dataset, "score:", acc, "| save to", f"{vqa_dataset}results_{random_uuid}.json")
        os.makedirs("eval_results", exist_ok=True)
        with open(os.path.join("eval_results", f"{vqa_dataset}_{model.expr_name}_{model.step_num}_{int(time.time())}_{acc}"), "w") as f:
            f.write(json.dumps(predictions, indent=2))

        # delete the temporary file
        os.remove(f"{vqa_dataset}results_{random_uuid}.json")
    else:
        time.sleep(5)
        acc = 0.0
    if world_size > 1:
        torch.distributed.barrier()
    return acc