File size: 5,644 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
from tqdm import tqdm
from PIL import Image
from io import BytesIO
import base64
import numpy as np
import time
import json
import os
import cv2
from coco_metric import compute_cider
import random
import pickle

def evaluate_reg(
    model,
    tokenizer,
    image_processor,
    vis_embed_size=None,
    rank=0,
    world_size=1,
    id=0,
):
    lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
    dataset_name = "refcocog"
    pkl_file = "/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal2/open_flamingo/eval/task/others/refcocog_reg_val_data.pkl"
    try:
        media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
        endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
        pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
        bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
    except:
        pass

    model.eval().cuda()
    if world_size > 1:
        torch.distributed.barrier()
    this_tot = 0
    predictions = []
    D = pickle.load(open(pkl_file, "rb"))
    lines = []
    data = D["data"]
    uniq_id_to_text = D["uniq_id_to_text"]
    uniq_id_to_image = D["uniq_id_to_image"]
    uniq_id_to_image_id = D["uniq_id_to_image_id"]
    for image_id in data:
        for region in data[image_id]:
            uniq_id = data[image_id][region][0]
            lines.append([uniq_id, uniq_id_to_image_id[uniq_id], [uniq_id_to_text[r] for r in data[image_id][region]], region, uniq_id_to_image[uniq_id]])
    print("total data:", len(lines))
    # lines = lines[:20]
    pbar = tqdm(lines, disable=(rank != 0))
    for ii, line in enumerate(pbar):
        if ii % world_size != rank:
            continue
        uniq_id, image_id, text, region_coord, image = line
        gt_box = np.array(region_coord)
        width = image.width
        height = image.height
        image = image.resize((224, 224))
        gt_box = gt_box / np.array([width, height, width, height]) * 224
        batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
        prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|><|#previsual#|><|#prebox#|><|#object#|>"]

        encodings = tokenizer(
            prompt,
            padding="longest",
            truncation=True,
            return_tensors="pt",
            max_length=2000,
        )
        input_ids = encodings["input_ids"]
        attention_mask = encodings["attention_mask"]
        image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
        image_start_index_list = [[x] for x in image_start_index_list]
        image_nums = [1] * len(input_ids)
        batch_images = batch_images.cuda()
        input_ids = input_ids.cuda()
        attention_mask = attention_mask.cuda()
        added_bbox_list = [(torch.tensor(gt_box).cuda() / 224).clamp(0, 0.99).unsqueeze(0)]

        with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
            outputs = model.generate(
                batch_images,
                input_ids,
                attention_mask=attention_mask,
                max_new_tokens=25,
                min_length=5,
                num_beams=8,
                length_penalty=0,
                image_start_index_list=image_start_index_list,
                image_nums=image_nums,
                added_bbox_list=added_bbox_list,
            )
        outputs = outputs[:, len(input_ids[0]) :]
        new_prediction = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip().lower()
        this_tot += 1
        if rank == 0 and this_tot % 10 == 0:
            for i in range(1):
                tqdm.write(f"answer: {text}\nmodel output: {new_prediction}")
        predictions.append(
            {"image_id": image_id, "caption": new_prediction}
        )
    results_path = f"reg_{lang_encoder_name}_{rank}_{id}.json"
    json.dump(predictions, open(results_path, "w"))
    print("save to", results_path)
    del predictions
    time.sleep(5)
    if world_size > 1:
        torch.distributed.barrier()
    if rank == 0:
        print(f"evaluate on rank {rank}. world size is {world_size}")
        predictions = []
        for rank_i in range(world_size):
            part_results_path = f"reg_{lang_encoder_name}_{rank_i}_{id}.json"
            print("load", part_results_path)
            part_data = json.load(open(part_results_path))
            predictions.extend(part_data)
            os.remove(part_results_path)
        print("num:", len(predictions))
        results_path = f"reg_{lang_encoder_name}_{id}_result.json"
        json.dump(predictions, open(results_path, "w"), indent=2)

        metrics = compute_cider(
            result_path=results_path,
            annotations_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal2/open_flamingo/eval/task/others/refcocog_reg_val_label.json",
        )
        os.makedirs("eval_results", exist_ok=True)
        cider = metrics["CIDEr"]
        print("cider", cider)
        with open(os.path.join("eval_results", f"reg_{model.expr_name}_{model.step_num}_{int(time.time())}_{cider}"), "w") as f:
            f.write(json.dumps(predictions, indent=2))
        # delete the temporary file
        os.remove(results_path)
        return cider


if __name__ == "__main__":
    anno = json.load(open("/gpfs/u/home/LMCG/LMCGljnn/scratch/.cache/lavis/coco_gt/coco_karpathy_test_gt.json"))
    import pdb; pdb.set_trace()
    print(anno.keys())