Spaces:
Runtime error
Runtime error
File size: 12,349 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import spacy
import torch
from tqdm import tqdm
import numpy as np
import itertools
nlp = spacy.load('en_core_web_md')
def get_iou(box1, box2):
# box1 and box2 should be in the format [x1, y1, x2, y2]
intersection = max(0, min(box1[2], box2[2]) - max(box1[0], box2[0])) * \
max(0, min(box1[3], box2[3]) - max(box1[1], box2[1]))
area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = area_box1 + area_box2 - intersection
iou = intersection / union if union > 0 else 0
return iou
# def find_root(token):
# if token.pos_ == "VERB":
# return token
# while token.dep_ not in ["pobj", "nsubj", "ROOT", "npadvmod", "dobj", "det", "prep", "punct", "cc", "conj", "acl", "dep", "appos", "relcl", "advmod", "nmod", "attr"]:
# token = token.head
# return token
def find_root(token):
if token.pos_ == "VERB":
return token
while token.dep_ in ["compound", "amod"]:
token = token.head
return token
def get_object_from_text(text, verbose=False):
if len(text.split(" ")) == 3:
text = text.split(" ")
return [text[0], text[-1]]
doc = nlp(text)
if verbose:
for TT in doc:
print(TT.text, TT.pos_, TT.dep_, TT.head)
roots = set()
for i, token in enumerate(doc):
roots.add(find_root(token))
exprs = []
roots = sorted(list(roots), key=lambda token: token.idx)
first_nsubj = True
if verbose:
print(roots)
for root in roots:
if root.pos_ not in ["NOUN", "PROPN"]:
continue
if root.dep_ not in ["pobj", "nsubj"]:
continue
if not first_nsubj and root.dep_ in ["nsubj"]:
continue
exprs.append([])
for token in doc:
if find_root(token) == root:
exprs[-1].append(token.text)
exprs[-1] = " ".join(exprs[-1]).replace(" '", "'")
if exprs[-1] not in text:
if verbose:
print("not in text error:", exprs[-1], "#",text)
# for TT in doc:
# print(TT.text, TT.pos_, TT.dep_, TT.head)
# import pdb; pdb.set_trace()
exprs.pop()
if first_nsubj and root.dep_ in ["nsubj"]:
first_nsubj = False
if len(exprs) <= 1:
if verbose:
print("not enough exprs error:", exprs, "#",text)
return []
return exprs
def is_correct(input_ids, logits, tokenizer, object: str, topk=5, N=10):
answer_id = torch.tensor(tokenizer(f" {object}", add_special_tokens=False)["input_ids"]).to(input_ids.device)
answer_begin_idx = (input_ids == answer_id[0]).nonzero()
answer_idx = None
for (batch_idx, IDX) in answer_begin_idx:
try:
if (input_ids[batch_idx, IDX:IDX+len(answer_id)] == answer_id).all():
answer_idx = list(range(IDX-1, IDX+len(answer_id)-1))
except:
pass
if answer_idx is None:
return np.inf, False, False
res = logits[0, answer_idx].softmax(-1).sort(descending=True)
values = res.values
indices = res.indices
chosen_ids = list(itertools.product(*([list(range(N))]*len(answer_idx))))
probs = []
for ids in chosen_ids:
prob = 1.0
for i, id in enumerate(ids):
prob *= values[i, id]
probs.append((prob.item(), ids))
probs.sort(reverse=True)
answer_pos = tuple([id_array.tolist().index(idx) for id_array, idx in zip(indices, answer_id)])
ranking = [p[1] for p in probs]
# if len(answer_idx) > 1:
# import pdb; pdb.set_trace()
try:
r = ranking.index(answer_pos)
return r, r < 1, r < 5
except:
return np.inf, False, False
def get_bbox(visual_box_list, batch_images, prompt, model, tokenizer, media_token_id, prebox_token_id, debug=False, return_all=False):
assert isinstance(prompt, list) and len(prompt) == 1 and isinstance(prompt[0], str)
encodings = tokenizer(
prompt,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
vision_x = batch_images.cuda()
lang_x = input_ids.cuda()
attention_mask = attention_mask.cuda()
model.debug_id = 0
with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
outputs = model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
labels=None,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=visual_box_list,
add_box=visual_box_list is not None,
relations=None,
debug_mode=False,
)
boxes = outputs["boxes"]
scores = outputs["scores"]
if debug:
import pdb; pdb.set_trace()
if return_all:
return boxes, scores
if len(scores) == 0:
return None, None
else:
return boxes[scores.argmax()], scores.max()
def _eval_text_image(text, image, model, tokenizer, image_processor, vis_embed_size, media_token_id, prebox_token_id, debug=False, objects=None):
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
if objects is None:
objects = get_object_from_text(text)
if len(objects) == 0:
return None, None, None
if debug:
tqdm.write(text)
tqdm.write(f"{objects}")
first_idx = text.find(objects[0])
if first_idx == 0:
first_text = f"<|#object#|>{objects[0]}<|#endofobject#|><|#visual#|>"
else:
first_text = text[:first_idx-1] + f"<|#object#|> {objects[0]}<|#endofobject#|><|#visual#|>"
if debug:
tqdm.write(first_text)
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{first_text}"]
# import pdb; pdb.set_trace()
# print("do first get_bbox |", first_text)
first_box, first_score = get_bbox(None, batch_images, prompt, model, tokenizer, media_token_id, prebox_token_id, return_all=False)
if not model.valid and debug:
import pdb; pdb.set_trace()
if first_box is not None:
added_bbox_list = [torch.tensor(first_box).unsqueeze(0).cuda() / 224]
text = first_text + "<|#box#|><|#endofobject#|>" + text[first_idx+len(objects[0]):]
else:
added_bbox_list = []
final_ranks = []
is_top1_list = []
is_top5_list = []
for kk, object in enumerate(objects):
if kk == 0:
continue
idx = text.find(objects[0])
for t_i, temp in enumerate(objects[1:kk+1]):
# t_i is actually the previous one. This is not a bug
idx = text.find(temp, idx + len(objects[t_i]))
while idx+len(temp) != len(text) and (text[idx-1] == "#" or text[idx+len(temp)] == "#"):
# in case temp is box or object or visual or something like that
idx = text.find(temp, idx + len(temp))
this_text = text[:idx-1] + "<|#object#|><|#previsual#|>"
# if this_text == "<|#object#|><|#previsual#|>":
# import pdb; pdb.set_trace()
if debug:
tqdm.write(this_text)
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{this_text}"]
# import pdb; pdb.set_trace()
# print("do pre get_bbox |", this_text)
pre_boxes, pre_scores = get_bbox(added_bbox_list, batch_images, prompt, model, tokenizer, media_token_id,
prebox_token_id, return_all=True)
if not model.valid and debug:
import pdb; pdb.set_trace()
logits_list = []
# pre_boxes = [pre_boxes[0]]
# pre_scores = [pre_scores[0]]
this_text = this_text + f"<|#prebox#|><|#object#|> {object}<|#endofobject#|>"
for pre_box, pre_score in zip(pre_boxes, pre_scores):
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{this_text}"]
encodings = tokenizer(
prompt,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=512,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
vision_x = batch_images.cuda()
lang_x = input_ids.cuda()
attention_mask = attention_mask.cuda()
this_added_bbox_list = added_bbox_list + [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
outputs = model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=this_added_bbox_list,
add_box=this_added_bbox_list is not None and len(this_added_bbox_list) != 0,
relations=None,
)
if not model.valid and debug:
import pdb; pdb.set_trace()
logits_list.append([pre_score, outputs.logits])
if debug:
answer_start_idx = (lang_x == tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]).nonzero()[-1][1]
logits = outputs["logits"][0, answer_start_idx:]
tqdm.write(tokenizer.decode(logits[0].sort(descending=True).indices.tolist()[:10]))
# if debug:
# image.save("Atest.png")
# open_cv_image = np.array(image)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# if first_box is not None:
# open_cv_image = cv2.rectangle(open_cv_image, first_box[:2].astype(int), first_box[2:].astype(int), (255, 0, 0), 2)
# if pre_box is not None:
# open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), 2)
# cv2.imwrite(f"Atest.png", open_cv_image)
# import pdb; pdb.set_trace()
pre_scores = np.array([x[0] for x in logits_list])
final_probs = 0.0
for score, (_, logits) in zip(pre_scores, logits_list):
final_probs += score * logits.softmax(-1)
assert input_ids.shape[:2] == final_probs.shape[:2]
_rank, is_top1, is_top5 = is_correct(input_ids, final_probs, tokenizer, object, topk=5)
final_ranks.append(_rank)
is_top1_list.append(is_top1)
is_top5_list.append(is_top5)
this_text = text[:idx-1] + f"<|#object#|> {object}<|#endofobject#|><|#visual#|>"
if debug:
tqdm.write(this_text)
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{this_text}"]
# print("do this get_bbox |", this_text)
this_box, this_score = get_bbox(added_bbox_list, batch_images, prompt, model, tokenizer, media_token_id, prebox_token_id, return_all=False)
if not model.valid and debug:
import pdb; pdb.set_trace()
if this_box is not None:
added_bbox_list += [torch.tensor(this_box).unsqueeze(0).cuda() / 224]
text = this_text + "<|#box#|><|#endofobject#|>" + text[idx+len(object):]
return final_ranks, is_top1_list, is_top5_list
if __name__ == "__main__":
# print(get_object_from_text("there is a cookie. there is a bear. white orio cookie is next to the teddy bear. car runs on the traffic road. there is a tree.", verbose=False))
print(get_object_from_text("President speaks to an American at a business office",verbose=True))
|