File size: 12,349 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import spacy
import torch
from tqdm import tqdm
import numpy as np
import itertools
nlp = spacy.load('en_core_web_md')


def get_iou(box1, box2):
    # box1 and box2 should be in the format [x1, y1, x2, y2]
    intersection = max(0, min(box1[2], box2[2]) - max(box1[0], box2[0])) * \
                   max(0, min(box1[3], box2[3]) - max(box1[1], box2[1]))
    area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
    union = area_box1 + area_box2 - intersection
    iou = intersection / union if union > 0 else 0
    return iou


# def find_root(token):
#     if token.pos_ == "VERB":
#         return token
#     while token.dep_ not in ["pobj", "nsubj", "ROOT", "npadvmod", "dobj", "det", "prep", "punct", "cc", "conj", "acl", "dep", "appos", "relcl", "advmod", "nmod", "attr"]:
#         token = token.head
#     return token


def find_root(token):
    if token.pos_ == "VERB":
        return token
    while token.dep_ in ["compound", "amod"]:
        token = token.head
    return token

def get_object_from_text(text, verbose=False):
    if len(text.split(" ")) == 3:
        text = text.split(" ")
        return [text[0], text[-1]]
    doc = nlp(text)
    if verbose:
        for TT in doc:
            print(TT.text, TT.pos_, TT.dep_, TT.head)
    roots = set()
    for i, token in enumerate(doc):
        roots.add(find_root(token))
    exprs = []
    roots = sorted(list(roots), key=lambda token: token.idx)
    first_nsubj = True
    if verbose:
        print(roots)
    for root in roots:
        if root.pos_ not in ["NOUN", "PROPN"]:
            continue
        if root.dep_ not in ["pobj", "nsubj"]:
            continue
        if not first_nsubj and root.dep_ in ["nsubj"]:
            continue
        exprs.append([])
        for token in doc:
            if find_root(token) == root:
                exprs[-1].append(token.text)
        exprs[-1] = " ".join(exprs[-1]).replace(" '", "'")
        if exprs[-1] not in text:
            if verbose:
                print("not in text error:", exprs[-1], "#",text)
            # for TT in doc:
            #     print(TT.text, TT.pos_, TT.dep_, TT.head)
            # import pdb; pdb.set_trace()
            exprs.pop()
        if first_nsubj and root.dep_ in ["nsubj"]:
            first_nsubj = False
    if len(exprs) <= 1:
        if verbose:
            print("not enough exprs error:", exprs, "#",text)
        return []
    return exprs

def is_correct(input_ids, logits, tokenizer, object: str, topk=5, N=10):
    answer_id = torch.tensor(tokenizer(f" {object}", add_special_tokens=False)["input_ids"]).to(input_ids.device)
    answer_begin_idx = (input_ids == answer_id[0]).nonzero()
    answer_idx = None
    for (batch_idx, IDX) in answer_begin_idx:
        try:
            if (input_ids[batch_idx, IDX:IDX+len(answer_id)] == answer_id).all():
                answer_idx = list(range(IDX-1, IDX+len(answer_id)-1))
        except:
            pass
    if answer_idx is None:
        return np.inf, False, False
    res = logits[0, answer_idx].softmax(-1).sort(descending=True)
    values = res.values
    indices = res.indices
    chosen_ids = list(itertools.product(*([list(range(N))]*len(answer_idx))))
    probs = []
    for ids in chosen_ids:
        prob = 1.0
        for i, id in enumerate(ids):
            prob *= values[i, id]
        probs.append((prob.item(), ids))
    probs.sort(reverse=True)
    answer_pos = tuple([id_array.tolist().index(idx) for id_array, idx in zip(indices, answer_id)])
    ranking = [p[1] for p in probs]
    # if len(answer_idx) > 1:
    #     import pdb; pdb.set_trace()
    try:
        r = ranking.index(answer_pos)
        return r, r < 1, r < 5
    except:
        return np.inf, False, False

def get_bbox(visual_box_list, batch_images, prompt, model, tokenizer, media_token_id, prebox_token_id, debug=False, return_all=False):
    assert isinstance(prompt, list) and len(prompt) == 1 and isinstance(prompt[0], str)
    encodings = tokenizer(
        prompt,
        padding="longest",
        truncation=True,
        return_tensors="pt",
        max_length=2000,
    )
    input_ids = encodings["input_ids"]
    attention_mask = encodings["attention_mask"]
    image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
    image_start_index_list = [[x] for x in image_start_index_list]
    image_nums = [1] * len(input_ids)
    vision_x = batch_images.cuda()
    lang_x = input_ids.cuda()
    attention_mask = attention_mask.cuda()

    model.debug_id = 0
    with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
        outputs = model(
            vision_x=vision_x,
            lang_x=lang_x,
            attention_mask=attention_mask,
            labels=None,
            image_nums=image_nums,
            image_start_index_list=image_start_index_list,
            added_bbox_list=visual_box_list,
            add_box=visual_box_list is not None,
            relations=None,
            debug_mode=False,
        )
    boxes = outputs["boxes"]
    scores = outputs["scores"]
    if debug:
        import pdb; pdb.set_trace()
    if return_all:
        return boxes, scores
    if len(scores) == 0:
        return None, None
    else:
        return boxes[scores.argmax()], scores.max()


def _eval_text_image(text, image, model, tokenizer, image_processor, vis_embed_size, media_token_id, prebox_token_id, debug=False, objects=None):
    batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
    if objects is None:
        objects = get_object_from_text(text)
    if len(objects) == 0:
        return None, None, None
    if debug:
        tqdm.write(text)
        tqdm.write(f"{objects}")
    first_idx = text.find(objects[0])
    if first_idx == 0:
        first_text = f"<|#object#|>{objects[0]}<|#endofobject#|><|#visual#|>"
    else:
        first_text = text[:first_idx-1] + f"<|#object#|> {objects[0]}<|#endofobject#|><|#visual#|>"
    
    if debug:
        tqdm.write(first_text)
    prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{first_text}"]
    # import pdb; pdb.set_trace()
    # print("do first get_bbox |", first_text)
    first_box, first_score = get_bbox(None, batch_images, prompt, model, tokenizer, media_token_id, prebox_token_id, return_all=False)
    if not model.valid and debug:
        import pdb; pdb.set_trace()
    if first_box is not None:
        added_bbox_list = [torch.tensor(first_box).unsqueeze(0).cuda() / 224]
        text = first_text + "<|#box#|><|#endofobject#|>" + text[first_idx+len(objects[0]):]
    else:
        added_bbox_list = []

    final_ranks = []
    is_top1_list = []
    is_top5_list = []
    for kk, object in enumerate(objects):
        if kk == 0:
            continue
        idx = text.find(objects[0])
        for t_i, temp in enumerate(objects[1:kk+1]):
            # t_i is actually the previous one. This is not a bug
            idx = text.find(temp, idx + len(objects[t_i]))
            while idx+len(temp) != len(text) and (text[idx-1] == "#" or text[idx+len(temp)] == "#"):
                # in case temp is box or object or visual or something like that
                idx = text.find(temp, idx + len(temp))
        this_text = text[:idx-1] + "<|#object#|><|#previsual#|>"
        # if this_text == "<|#object#|><|#previsual#|>":
        #     import pdb; pdb.set_trace()
        if debug:
            tqdm.write(this_text)
        prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{this_text}"]
        # import pdb; pdb.set_trace()
        # print("do pre get_bbox |", this_text)
        pre_boxes, pre_scores = get_bbox(added_bbox_list, batch_images, prompt, model, tokenizer, media_token_id, 
        prebox_token_id, return_all=True)
        if not model.valid and debug:
            import pdb; pdb.set_trace()
        logits_list = []
        # pre_boxes = [pre_boxes[0]]
        # pre_scores = [pre_scores[0]]
        this_text = this_text + f"<|#prebox#|><|#object#|> {object}<|#endofobject#|>"
        for pre_box, pre_score in zip(pre_boxes, pre_scores):
            prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{this_text}"]
            encodings = tokenizer(
                prompt,
                padding="longest",
                truncation=True,
                return_tensors="pt",
                max_length=512,
            )
            input_ids = encodings["input_ids"]
            attention_mask = encodings["attention_mask"]
            image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
            image_start_index_list = [[x] for x in image_start_index_list]
            image_nums = [1] * len(input_ids)
            vision_x = batch_images.cuda()
            lang_x = input_ids.cuda()
            attention_mask = attention_mask.cuda()
            this_added_bbox_list = added_bbox_list + [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]

            with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
                outputs = model(
                    vision_x=vision_x,
                    lang_x=lang_x,
                    attention_mask=attention_mask,
                    image_nums=image_nums,
                    image_start_index_list=image_start_index_list,
                    added_bbox_list=this_added_bbox_list,
                    add_box=this_added_bbox_list is not None and len(this_added_bbox_list) != 0,
                    relations=None,
                )
            if not model.valid and debug:
                import pdb; pdb.set_trace()
            logits_list.append([pre_score, outputs.logits])
            if debug:
                answer_start_idx = (lang_x == tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]).nonzero()[-1][1]
                logits = outputs["logits"][0, answer_start_idx:]
                tqdm.write(tokenizer.decode(logits[0].sort(descending=True).indices.tolist()[:10]))
            # if debug:
            #     image.save("Atest.png")
            #     open_cv_image = np.array(image)
            #     open_cv_image = open_cv_image[:, :, ::-1].copy()
            #     if first_box is not None:
            #         open_cv_image = cv2.rectangle(open_cv_image, first_box[:2].astype(int), first_box[2:].astype(int), (255, 0, 0), 2)
            #     if pre_box is not None:
            #         open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), 2)
            #     cv2.imwrite(f"Atest.png", open_cv_image)
            #     import pdb; pdb.set_trace()
        pre_scores = np.array([x[0] for x in logits_list])
        final_probs = 0.0
        for score, (_, logits) in zip(pre_scores, logits_list):
            final_probs += score * logits.softmax(-1)
        assert input_ids.shape[:2] == final_probs.shape[:2]
        _rank, is_top1, is_top5 = is_correct(input_ids, final_probs, tokenizer, object, topk=5)
        final_ranks.append(_rank)
        is_top1_list.append(is_top1)
        is_top5_list.append(is_top5)
        this_text = text[:idx-1] + f"<|#object#|> {object}<|#endofobject#|><|#visual#|>"
        if debug:
            tqdm.write(this_text)
        prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{this_text}"]
        # print("do this get_bbox |", this_text)
        this_box, this_score = get_bbox(added_bbox_list, batch_images, prompt, model, tokenizer, media_token_id, prebox_token_id, return_all=False)
        if not model.valid and debug:
            import pdb; pdb.set_trace()
        if this_box is not None:
            added_bbox_list += [torch.tensor(this_box).unsqueeze(0).cuda() / 224]
            text = this_text + "<|#box#|><|#endofobject#|>" + text[idx+len(object):]
    return final_ranks, is_top1_list, is_top5_list




if __name__ == "__main__":
    # print(get_object_from_text("there is a cookie. there is a bear. white orio cookie is next to the teddy bear. car runs on the traffic road. there is a tree.", verbose=False))
    print(get_object_from_text("President speaks to an American at a business office",verbose=True))