Spaces:
Runtime error
Runtime error
File size: 36,918 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
import functools
import logging
import math
import random
import sys
from dataclasses import dataclass
from multiprocessing import Value
import time
import os
import numpy as np
import pickle as pkl
from open_flamingo.train.instruction_template import (
VG_RELATION_TEMPLATES,
PISC_TEMPLATES,
)
import torch
import webdataset as wds
from PIL import Image
from torch.utils.data import DataLoader, IterableDataset, get_worker_info
from torch.utils.data.distributed import DistributedSampler
from webdataset.tariterators import (
base_plus_ext,
tar_file_expander,
url_opener,
valid_sample,
)
from groundingdino.demo.caption_grounder import caption_grounder
from groundingdino.demo.inference_on_laion import add_loc_to_text
from groundingdino.demo.inference_on_laion import nms_without_score
from groundingdino.demo.inference_on_laion import calculate_iou
Image.MAX_IMAGE_PIXELS = 1000000000
LAION2B_NUM_SAMPLE = 1500000000
VQAV2_TRAIN_NUM_SAMPLE = 1828467
VG_RELATION_BBOX_SIZE = 600
REL_LABELS = ['__background__', 'above', 'across', 'against', 'along', 'and', 'at', 'attached to', 'behind', 'belonging to', 'between', 'carrying', 'covered in', 'covering', 'eating', 'flying in', 'for', 'from', 'growing on', 'hanging from', 'has', 'holding', 'in', 'in front of', 'laying on', 'looking at', 'lying on', 'made of', 'mounted on', 'near', 'of', 'on', 'on back of', 'over', 'painted on', 'parked on', 'part of', 'playing', 'riding', 'says', 'sitting on', 'standing on', 'to', 'under', 'using', 'walking in', 'walking on', 'watching', 'wearing', 'wears', 'with']
try:
import horovod.torch as hvd
except ImportError:
hvd = None
class ConcatDataset(IterableDataset):
def __init__(
self, dataset, max_length,
delimiter_id, pad_id=None, media_id=None, endofmedia_id=None,
image_embedding_size=-2, single=False, box_id=None, visual_id=None,
):
self.dataset = dataset
self.max_length = max_length
self.delimiter_id = torch.ones(1,1).long() * delimiter_id
if pad_id is not None:
self.pad_id = int(pad_id)
if media_id is not None:
self.media_id = torch.ones(1,1).long() * int(media_id)
if endofmedia_id is not None:
self.endofmedia_id = torch.ones(1,1).long() * int(endofmedia_id)
if image_embedding_size > 0:
logging.info(f"image_embedding_size: {image_embedding_size}")
self.image_embedding_size = image_embedding_size + 2
self.single = single
self.box_id = box_id
self.visual_id = visual_id
def __iter__(self):
while True:
input_ids_list = []
attention_mask_list = []
image_list = []
image_start_index_list = []
added_bbox_list = []
relations_list = []
cnt = 0
while cnt < self.max_length:
sample = next(self.dataset)
if len(sample) >= 4:
image = sample[0].unsqueeze(0)
input_ids = sample[1]
attention_mask = sample[2]
added_bbox = sample[3]
image_list.append(image)
added_bbox_list.append(added_bbox)
if len(sample) == 5:
relations_list.append(sample[4])
else:
sample = sample[0]
input_ids = sample[0]
attention_mask = sample[1]
input_ids_list.append(input_ids)
attention_mask_list.append(attention_mask)
cnt += input_ids.shape[-1]
if self.single:
break
input_ids = torch.cat(input_ids_list, dim=-1)[0]
attention_mask = torch.cat(attention_mask_list, dim=-1)[0]
if not self.single:
input_ids = input_ids[:self.max_length]
attention_mask = attention_mask[:self.max_length]
# TODO: fix visual number not match
if len(image_list) != 0:
images = torch.cat(image_list, dim=0)
image_begin = (input_ids == self.media_id[0,0]).nonzero().view(-1)
image_end = (input_ids == self.endofmedia_id[0,0]).nonzero().view(-1)
if len(image_begin) != len(image_end):
assert len(image_begin) == len(image_end) + 1
input_ids[image_begin[-1]:] = self.pad_id
attention_mask[image_begin[-1]:] = 0
image_begin = image_begin[:-1]
eos_token_num = len((input_ids == self.delimiter_id[0,0]).nonzero().view(-1))
if eos_token_num != len(image_begin) + 1:
input_ids[image_begin[-1]:] = self.pad_id
attention_mask[image_begin[-1]:] = 0
image_begin = image_begin[:-1]
image_end = image_end[:-1]
images = images[:len(image_end)]
added_bbox_list = added_bbox_list[:len(image_end)]
relations_list = relations_list[:len(image_end)]
image_start_index_list = (image_begin + 1).tolist()
expand_list = added_bbox_list[0]
for x in added_bbox_list[1:]:
expand_list.extend(x)
yield images, len(images), image_start_index_list, input_ids, attention_mask, expand_list, relations_list
else:
yield input_ids, attention_mask
class SharedEpoch:
def __init__(self, epoch: int = 0):
self.shared_epoch = Value("i", epoch)
def set_value(self, epoch):
self.shared_epoch.value = epoch
def get_value(self):
return self.shared_epoch.value
@dataclass
class DataInfo:
dataloader: DataLoader
sampler: DistributedSampler = None
shared_epoch: SharedEpoch = None
def set_epoch(self, epoch):
if self.shared_epoch is not None:
self.shared_epoch.set_value(epoch)
if self.sampler is not None and isinstance(self.sampler, DistributedSampler):
self.sampler.set_epoch(epoch)
def filter_no_caption_or_no_image(sample):
return ("txt" in sample) and (
"png" in sample or "jpg" in sample or "jpeg" in sample
)
def log_and_continue(exn):
"""Call in an exception handler to ignore any exception, issue a warning, and continue."""
if "ValueError" in repr(exn) or "KeyError" in repr(exn): # Avoid spamming logs with these
return True
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.")
return True
# DEBUG
# log_and_continue = None
# DEBUG
def group_by_keys_nothrow(
data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None
):
"""Return function over iterator that groups key, value pairs into samples.
:param keys: function that splits the key into key and extension (base_plus_ext)
:param lcase: convert suffixes to lower case (Default value = True)
"""
current_sample = None
tar_idx = None
for filesample in data:
assert isinstance(filesample, dict)
current_tar_idx = filesample["__url__"].split("/")[-1].split(".")[0]
if current_tar_idx != tar_idx:
tar_idx = current_tar_idx
if "blip2_all_data_ground" in filesample["__url__"]:
relation_data_dir = os.path.join("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/blip2_all_data_relation", tar_idx)
missing_file = False
try:
data_info = pkl.load(open(os.path.join(relation_data_dir, "custom_data_info.pkl"), "rb"))
prediction = pkl.load(open(os.path.join(relation_data_dir, "custom_prediction.pkl"), "rb"))
idx_to_files = data_info["idx_to_files"]
ind_to_classes = data_info["ind_to_classes"]
ind_to_predicates = data_info["ind_to_predicates"]
files_to_idx = {x.split("#")[-1]: i for i, x in enumerate(idx_to_files)}
except:
missing_file = True
fname, value = filesample["fname"], filesample["data"]
prefix, suffix = keys(fname)
if prefix is None:
continue
if lcase:
suffix = suffix.lower()
# FIXME webdataset version throws if suffix in current_sample, but we have a potential for
# this happening in the current LAION400m dataset if a tar ends with same prefix as the next
# begins, rare, but can happen since prefix aren't unique across tar files in that dataset
if (
current_sample is None
or prefix != current_sample["__key__"]
or suffix in current_sample
):
if valid_sample(current_sample):
yield current_sample
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
if "blip2_all_data_ground" in filesample["__url__"] and not missing_file:
try:
idx = files_to_idx[prefix]
prediction[idx]["bbox"] = [np.array(bbox)/VG_RELATION_BBOX_SIZE for bbox in prediction[idx]["bbox"]]
current_sample["relation_data"] = prediction[idx]
except:
current_sample["relation_data"] = dict()
else:
current_sample["relation_data"] = dict()
if suffixes is None or suffix in suffixes:
current_sample[suffix] = value
if valid_sample(current_sample):
yield current_sample
def tarfile_to_samples_nothrow(src, handler=log_and_continue):
# NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
streams = url_opener(src, handler=handler)
files = tar_file_expander(streams, handler=handler)
samples = group_by_keys_nothrow(files, handler=handler)
return samples
def pytorch_worker_seed(increment=0):
"""get dataloader worker seed from pytorch"""
worker_info = get_worker_info()
if worker_info is not None:
# favour using the seed already created for pytorch dataloader workers if it exists
seed = worker_info.seed
if increment:
# space out seed increments so they can't overlap across workers in different iterations
seed += increment * max(1, worker_info.num_workers)
return seed
# fallback to wds rank based seed
return wds.utils.pytorch_worker_seed()
_SHARD_SHUFFLE_SIZE = 2000
_SHARD_SHUFFLE_INITIAL = 500
_SAMPLE_SHUFFLE_SIZE = 5000
_SAMPLE_SHUFFLE_INITIAL = 1000
class ResampledShards2(IterableDataset):
"""An iterable dataset yielding a list of urls."""
def __init__(
self,
urls,
nshards=sys.maxsize,
worker_seed=None,
deterministic=False,
epoch=-1,
):
"""Sample shards from the shard list with replacement.
:param urls: a list of URLs as a Python list or brace notation string
"""
super().__init__()
urls = wds.shardlists.expand_urls(urls)
self.urls = urls
assert isinstance(self.urls[0], str)
self.nshards = nshards
self.rng = random.Random()
self.worker_seed = worker_seed
self.deterministic = deterministic
self.epoch = epoch
def __iter__(self):
"""Return an iterator over the shards."""
if isinstance(self.epoch, SharedEpoch):
epoch = self.epoch.get_value()
else:
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
# situation as different workers may wrap at different times (or not at all).
self.epoch += 1
epoch = self.epoch
if self.deterministic:
# reset seed w/ epoch if deterministic
if self.worker_seed is None:
# pytorch worker seed should be deterministic due to being init by arg.seed + rank + worker id
seed = pytorch_worker_seed(epoch)
else:
seed = self.worker_seed() + epoch
seed = seed + int(time.time())
self.rng.seed(seed)
# logging.info(f"epoch: {epoch} seed: {seed}")
self.rng.shuffle(self.urls)
# logging.info(f"{len(self.urls)} | {self.urls[:2]}")
for url in self.urls:
# logging.info(f"{seed}: {url}")
yield dict(url=url)
def preprocess_image(sample, image_processor):
image = image_processor(sample)
return image
def preprocess_text(sample, tokenizer, max_length, single=False):
if not single:
text = tokenizer(tokenizer.bos_token+sample.strip(), return_tensors="pt", max_length=max_length, truncation=True)
else:
text = tokenizer(tokenizer.bos_token+sample.strip(), return_tensors="pt", max_length=max_length, truncation=True, padding='max_length')
return text["input_ids"], text["attention_mask"]
def preprocess_encoded_text(sample, tokenizer, max_length):
sample = sample.decode("utf-8")
return preprocess_text(sample, tokenizer, max_length=max_length)
def _merge_bbox_previsual(added_bbox_list):
bbox_list = []
for bboxes in added_bbox_list:
x1 = bboxes[:, 0].min()
y1 = bboxes[:, 1].min()
x2 = bboxes[:, 2].max()
y2 = bboxes[:, 3].max()
bbox_list.append(torch.tensor([x1, y1, x2, y2], device=bboxes.device, dtype=bboxes.dtype).unsqueeze(0))
return bbox_list
def _find_idx(text, subtext):
loc = 0
locs = []
while text.find(subtext, loc) != -1:
loc = text.find(subtext, loc)
locs.append(loc)
loc += len(subtext)
return locs
def preprocess_ground_caption(sample, image_processor, tokenizer, image_embedding_size, generator, prob_ground=1.0, single=False, use_format_v2=False, add_visual_token=False, max_length=None, args=None):
assert max_length is not None
assert not single, "single is not supported for preprocess_ground_caption"
image, caption, logits_filt, boxes_filt, relation_data = sample
if len(logits_filt.shape) == 1 and logits_filt.shape[0] == 4 and len(boxes_filt.shape) == 1 and boxes_filt.shape[0] == 4:
raise NotImplementedError # lack relation data
return preprocess_visual_genome(sample=sample, image_processor=image_processor, tokenizer=tokenizer, image_embedding_size=image_embedding_size, prob_ground=prob_ground, single=single, use_format_v2=use_format_v2, add_visual_token=add_visual_token, max_length=max_length)
image = preprocess_image(image, image_processor=image_processor)
added_bbox = []
if (prob_ground != 0 and random.random() <= prob_ground) or prob_ground == 1.0:
boxes_filt, pred_phrases = generator.postprocess(logits_filt, boxes_filt, generator.ground_model, caption, generator.text_threshold, generator.box_threshold, with_logits=True)
caption, added_bbox = add_loc_to_text(
boxes_filt, pred_phrases, caption,
expand=args.expand, always_expand=args.longer_previsual,
)
visual_loc = []
obj_loc = []
endofobj_loc = []
visual_token = "<|#visual#|>"
previsual_token = "<|#previsual#|>"
box_token = "<|#box#|>"
prebox_token = "<|#prebox#|>"
end_token = "<|#endofobject#|>"
object_token = "<|#object#|>"
end_of_attr_token = "<|#endofattr#|>"
preend_of_attr_token = "<|#preendofattr#|>"
visual_loc = _find_idx(caption, visual_token)
try:
if len(visual_loc) != len(added_bbox):
logging.warning(f"visual_loc: {visual_loc}")
logging.warning(f"added_bbox: {added_bbox}")
except:
pass
assert len(visual_loc) == len(added_bbox)
delta = 0
for i, (loc, boxes) in enumerate(zip(visual_loc, added_bbox)):
loc += delta
boxes = nms_without_score(boxes)
added_bbox[i] = boxes
added_tokens = end_token + visual_token + box_token * len(boxes) + end_of_attr_token
caption = caption[:loc] + added_tokens + caption[len(visual_token) + loc:]
delta += len(added_tokens) - len(visual_token)
if use_format_v2:
merge_added_bbox = _merge_bbox_previsual(added_bbox)
# step 1: move <|#object#|> before the space char
while caption.find(f" {object_token}") != -1:
caption = caption.replace(f" {object_token}", f"{object_token} ")
# step 2: add <|#previsual#|> after <|#object#|> for 75% except the first object
i = 0
II = -1
if args.no_visual:
flag = False
delete_visual_prob = 10.0
else:
flag = True
delete_visual_prob = 0.75
while i < len(caption):
if caption[i: i + len(object_token)] == object_token:
II += 1
if (not args.longer_previsual and not flag and random.random() < delete_visual_prob) or (args.longer_previsual and (flag or random.random() < delete_visual_prob)):
# delete visual and add previsual
visual_start_idx = caption.find(end_token, i+1) + len(end_token)
visual_end_idx = caption.find(end_of_attr_token, visual_start_idx+1) + len(end_of_attr_token)
caption = caption[:visual_start_idx] + caption[visual_end_idx:]
caption = caption[:i + len(object_token)] + previsual_token + prebox_token + preend_of_attr_token + caption[i + len(object_token):]
added_bbox[II] = merge_added_bbox[II]
i += 1
flag = False
if args.no_previsual and args.no_visual:
caption = caption.replace(previsual_token, "").replace(prebox_token, "").replace(preend_of_attr_token, "")
added_bbox = []
caption = caption.replace(preend_of_attr_token, object_token).replace(end_of_attr_token, end_token)
if args.roi_align:
i = 0
pad_num = args.roi_output_size ** 2 - 1
while i < len(caption):
if caption[i: i + len(prebox_token)] == prebox_token:
caption = caption[:i] + tokenizer.pad_token * pad_num + caption[i:]
i += len(tokenizer.pad_token) * pad_num + len(prebox_token)
elif caption[i: i + len(box_token)] == box_token:
caption = caption[:i] + tokenizer.pad_token * pad_num + caption[i:]
i += len(tokenizer.pad_token) * pad_num + len(box_token)
i += 1
caption = f"<|#image#|>{tokenizer.pad_token*image_embedding_size}<|#endofimage#|>" + caption
input_ids, attention_mask = preprocess_text(caption, tokenizer, max_length=max_length)
relations = []
if args.only_grounded_sample and "<|#visual#|>" not in caption:
raise ValueError
return image, input_ids, attention_mask, added_bbox, relations
def preprocess_visual_genome(sample, image_processor, tokenizer, image_embedding_size, prob_ground=1.0, single=False, use_format_v2=False, add_visual_token=False, max_length=None):
assert max_length is not None
assert not single, "single is not supported for preprocess_ground_caption"
image, caption, xyxy, _ = sample
image = preprocess_image(image, image_processor=image_processor)
caption = f"<|#image#|>{tokenizer.pad_token*image_embedding_size}<|#endofimage#|><|#object#|>" + caption.strip() + "<|#endofobject#|><|#visual#|><|#box#|><|#endofattr#|>"
input_ids, attention_mask = preprocess_text(caption, tokenizer, max_length=max_length)
added_bbox = [torch.tensor(np.expand_dims(xyxy, 0).astype(np.float32) / 224)]
return image, input_ids, attention_mask, added_bbox
special_predicate = [
"and",
"has",
"says",
"wears",
]
original_predicate = {
"and": "and",
"has": "have",
"says": "say",
"wears": "wear",
}
def generate_vg_relation_sample(boxA, boxB, nameA, nameB, relation):
if relation in ["and", "of"]:
id = 0
else:
id = random.choice(range(len(VG_RELATION_TEMPLATES)))
text = VG_RELATION_TEMPLATES[id].format(nameA=nameA, nameB=nameB, relation=relation, use_is="is" if relation not in special_predicate else "", is_or_does="is" if relation not in special_predicate else "does", relation_do=relation if relation not in special_predicate else original_predicate[relation])
if id in [0]:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [1]:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxB]),
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [2]:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [3]:
added_bbox = [
torch.tensor([boxB]),
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [4]:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [5]:
added_bbox = [
torch.tensor([boxB]),
torch.tensor([boxA]),
]
else:
raise NotImplementedError
return text, added_bbox
def generate_pisc_sample(boxA, boxB, relation):
id = random.choice(range(len(PISC_TEMPLATES)))
text = PISC_TEMPLATES[id].format(relation=relation)
if id in [0]:
if random.random() < 0.5:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxB]),
]
else:
added_bbox = [
torch.tensor([boxB]),
torch.tensor([boxA]),
]
elif id in [1]:
if random.random() < 0.5:
added_bbox = [torch.tensor([boxA, boxB])]
else:
added_bbox = [torch.tensor([boxB, boxA])]
return text, added_bbox
def preprocess_instruct(sample, image_processor, tokenizer, image_embedding_size, prob_ground=1.0, single=False, use_format_v2=False, add_visual_token=False, max_length=None):
image_path, dataset, data = sample
image = Image.open(image_path)
size = image_processor.transforms[0].size
image = image.resize((size, size))
if dataset == "pisc_relation_split":
boxA = data[0]
boxB = data[1]
relation = data[2]
text, added_bbox = generate_pisc_sample(boxA, boxB, relation)
# import cv2
# boxA *= size
# boxB *= size
# open_cv_image = np.array(image)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# open_cv_image = cv2.rectangle(open_cv_image, boxA[:2].astype(int), boxA[2:].astype(int), (255, 0, 0), 2)
# open_cv_image = cv2.rectangle(open_cv_image, boxB[:2].astype(int), boxB[2:].astype(int), (0, 255, 0), 2)
# cv2.imwrite("output.jpg", open_cv_image)
# import pdb; pdb.set_trace()
elif dataset == "vg_relation":
boxA = data[0][0]
nameA = data[0][1]
boxB = data[1][0]
nameB = data[1][1]
relation = data[2]
text, added_bbox = generate_vg_relation_sample(boxA, boxB, nameA, nameB, relation)
image = preprocess_image(image, image_processor=image_processor)
caption = f"<|#image#|>{tokenizer.pad_token*image_embedding_size}<|#endofimage#|>" + text + tokenizer.eos_token
input_ids, attention_mask = preprocess_text(caption, tokenizer, max_length=max_length, single=True)
# return image, input_ids, attention_mask, added_bbox
images = image.unsqueeze(0)
image_start_index_list = [2]
return images, len(images), image_start_index_list, input_ids, attention_mask, added_bbox
def preprocess_caption(sample, image_processor, tokenizer, image_embedding_size, max_length, single=False):
image, caption = sample
caption = f"<|#image#|>{tokenizer.pad_token*image_embedding_size}<|#endofimage#|>" + caption
image = preprocess_image(image, image_processor=image_processor)
input_ids, attention_mask = preprocess_text(caption, tokenizer, max_length=max_length, single=single)
return image, input_ids, attention_mask
def get_pile_dataset(args, image_processor, tokenizer, epoch=0, floor=False):
input_shards = args.pile_shards
assert input_shards is not None
resampled = getattr(args, "dataset_resampled", False)
assert resampled, "turn on dataset_resampled to allow infinite stream of samples"
# create a shared epoch store to sync epoch to dataloader worker proc
shared_epoch = SharedEpoch(epoch=epoch)
preprocess_text_fn = functools.partial(preprocess_encoded_text, tokenizer=tokenizer, max_length=args.max_length)
pipeline = [
ResampledShards2(input_shards, deterministic=True, epoch=shared_epoch),
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
),
wds.to_tuple("txt", handler=log_and_continue),
wds.map_tuple(
preprocess_text_fn, handler=log_and_continue
),
]
# with_epoch(sys.maxsize) will give us an infinite sample stream
dataset = wds.DataPipeline(*pipeline).with_epoch(sys.maxsize)
delimiter_id = tokenizer(tokenizer.eos_token, add_special_tokens=False)["input_ids"][-1]
dataset = ConcatDataset(iter(dataset), max_length=args.max_length, delimiter_id=delimiter_id)
def text_collate_fn(items):
try:
input_ids = torch.cat([x[0].unsqueeze(0) for x in items], dim=0)
attention_mask = torch.cat([x[1].unsqueeze(0) for x in items], dim=0)
return input_ids, attention_mask
except:
return None, None
dataloader = wds.WebLoader(
dataset,
batch_size=args.batch_size_pile,
shuffle=False,
num_workers=args.workers,
persistent_workers=False,
collate_fn=text_collate_fn,
)
return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch)
# FIXME:
# modify /gpfs/u/home/LMCG/LMCGljnn/scratch/miniconda3-ppc64le/envs/unified/lib/python3.9/site-packages/webdataset/filters.py, line 433
# combine_tensors=True to combine_tensors=False
def get_ground_laion_dataset(args, image_processor, tokenizer, epoch=0, floor=False):
input_shards = args.laion_shards
assert input_shards is not None
resampled = getattr(args, "dataset_resampled", False)
assert resampled, "turn on dataset_resampled to allow infinite stream of samples"
# create a shared epoch store to sync epoch to dataloader worker proc
shared_epoch = SharedEpoch(epoch=epoch)
generator = caption_grounder(
config_file="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
checkpoint_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/GroundingDINO/checkpoints/groundingdino_swint_ogc.pth",
cpu_only=True,
# box_threshold=0.5, text_threshold=0.3,
)
preprocess_ground_caption_fn = functools.partial(
preprocess_ground_caption, image_processor=image_processor, tokenizer=tokenizer,
image_embedding_size=args.vis_embed_size, single=args.single, generator=generator,
prob_ground=args.prob_ground, use_format_v2=args.use_format_v2,
add_visual_token=args.add_visual_token, max_length=args.max_length,
args=args,
)
pipeline = [
ResampledShards2(input_shards, deterministic=True, epoch=shared_epoch),
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
),
wds.select(filter_no_caption_or_no_image),
wds.decode("pilrgb", partial=True, handler=log_and_continue),
wds.to_tuple("jpg;png;jpeg", "txt", "logits.pyd", "boxes.pyd", "relation_data", handler=log_and_continue),
wds.map(
preprocess_ground_caption_fn, handler=log_and_continue
),
]
dataset = wds.DataPipeline(*pipeline).with_epoch(sys.maxsize)
# for sample in dataset:
# print(tokenizer.decode(sample[1][0]).replace("<PAD>", ""))
# DEBUG
# dataset = wds.DataPipeline(*pipeline)
# from tqdm import tqdm
# for sample in tqdm(dataset):
# nn = 0
# for x in sample[1][0]:
# if x == tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]:
# nn += 1
# if x == tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]:
# nn -= 1
# if nn not in [0, 1]:
# print(tokenizer.decode(sample[1][0]).replace("<PAD>", ""))
# import pdb; pdb.set_trace()
# if nn != 0:
# print(tokenizer.decode(sample[1][0]).replace("<PAD>", ""))
# import pdb; pdb.set_trace()
# from groundingdino.demo.inference_on_laion import OBJ_LENGTHS
# # import pdb; pdb.set_trace()
# print(sum(OBJ_LENGTHS) / len(OBJ_LENGTHS))
# exit()
# DEBUG
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
delimiter_id = tokenizer(tokenizer.eos_token, add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
box_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
visual_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
dataset = ConcatDataset(
iter(dataset), max_length=args.max_length,
delimiter_id=delimiter_id,
pad_id=tokenizer.pad_token_id,
media_id=media_token_id,
endofmedia_id=endofmedia_token_id,
box_id=box_id,
visual_id=visual_id,
image_embedding_size=args.vis_embed_size,
single=args.single,
)
def image_collate_fn(items):
images = torch.cat([x[0] for x in items], dim=0)
image_nums = [x[1] for x in items]
image_start_index_list = [x[2] for x in items]
input_ids = torch.cat([x[3].unsqueeze(0) for x in items], dim=0)
attention_mask = torch.cat([x[4].unsqueeze(0) for x in items], dim=0)
added_bbox_list = [x[5] for x in items]
expand_list = added_bbox_list[0]
for x in added_bbox_list[1:]:
expand_list.extend(x)
relations_list = [x[6] for x in items]
return images, image_nums, image_start_index_list, input_ids, attention_mask, expand_list, relations_list
dataloader = wds.WebLoader(
dataset,
batch_size=args.batch_size_laion,
shuffle=False,
num_workers=args.workers,
persistent_workers=False,
collate_fn=image_collate_fn,
)
round_fn = math.floor if floor else math.ceil
global_batch_size = args.batch_size_laion * args.world_size
num_batches = round_fn(LAION2B_NUM_SAMPLE / global_batch_size)
dataloader.num_batches = num_batches
return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch)
def get_image_text_pair_dataset(args, image_processor, tokenizer, epoch=0, floor=False):
input_shards = args.laion_shards
assert input_shards is not None
resampled = getattr(args, "dataset_resampled", False)
assert resampled, "turn on dataset_resampled to allow infinite stream of samples"
# create a shared epoch store to sync epoch to dataloader worker proc
shared_epoch = SharedEpoch(epoch=epoch)
preprocess_caption_fn = functools.partial(
preprocess_caption, image_processor=image_processor, tokenizer=tokenizer,
image_embedding_size=args.vis_embed_size, single=args.single,
max_length=args.max_length,
)
pipeline = [
ResampledShards2(input_shards, deterministic=True, epoch=shared_epoch),
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
),
wds.select(filter_no_caption_or_no_image),
wds.decode("pilrgb", handler=log_and_continue),
wds.to_tuple("jpg;png;jpeg", "txt", handler=log_and_continue),
wds.map(
preprocess_caption_fn, handler=log_and_continue
),
]
dataset = wds.DataPipeline(*pipeline).with_epoch(sys.maxsize)
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
delimiter_id = tokenizer(tokenizer.eos_token, add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
dataset = ConcatDataset(
iter(dataset), max_length=args.max_length,
delimiter_id=delimiter_id,
pad_id=tokenizer.pad_token_id,
media_id=media_token_id,
endofmedia_id=endofmedia_token_id,
image_embedding_size=args.vis_embed_size,
single=args.single,
)
def image_collate_fn(items):
images = torch.cat([x[0] for x in items], dim=0)
image_nums = [x[1] for x in items]
image_start_index_list = [x[2] for x in items]
input_ids = torch.cat([x[3].unsqueeze(0) for x in items], dim=0)
attention_mask = torch.cat([x[4].unsqueeze(0) for x in items], dim=0)
return images, image_nums, image_start_index_list, input_ids, attention_mask
dataloader = wds.WebLoader(
dataset,
batch_size=args.batch_size_laion,
shuffle=False,
num_workers=args.workers,
persistent_workers=False,
collate_fn=image_collate_fn,
)
round_fn = math.floor if floor else math.ceil
global_batch_size = args.batch_size_laion * args.world_size
num_batches = round_fn(LAION2B_NUM_SAMPLE / global_batch_size)
dataloader.num_batches = num_batches
return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch)
def get_instruct_dataset(args, image_processor, tokenizer, epoch=0, floor=False):
input_shards = args.laion_shards
assert input_shards is not None
resampled = getattr(args, "dataset_resampled", False)
assert resampled, "turn on dataset_resampled to allow infinite stream of samples"
# create a shared epoch store to sync epoch to dataloader worker proc
shared_epoch = SharedEpoch(epoch=epoch)
preprocess_instruct_fn = functools.partial(
preprocess_instruct, image_processor=image_processor, tokenizer=tokenizer,
image_embedding_size=args.vis_embed_size,
max_length=args.max_length,
)
pipeline = [
ResampledShards2(input_shards, deterministic=True, epoch=shared_epoch),
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
),
wds.decode(partial=True),
wds.to_tuple("image_path.txt", "dataset.txt", "data.pyd", handler=log_and_continue),
wds.map(
preprocess_instruct_fn, handler=log_and_continue
),
]
dataset = wds.DataPipeline(*pipeline).with_epoch(sys.maxsize)
def image_collate_fn(items):
images = torch.cat([x[0] for x in items], dim=0)
image_nums = [x[1] for x in items]
image_start_index_list = [x[2] for x in items]
input_ids = torch.cat([x[3] for x in items], dim=0)
attention_mask = torch.cat([x[4] for x in items], dim=0)
added_bbox_list = [x[5] for x in items]
expand_list = added_bbox_list[0]
for x in added_bbox_list[1:]:
expand_list.extend(x)
return images, image_nums, image_start_index_list, input_ids, attention_mask, expand_list
dataloader = wds.WebLoader(
dataset,
batch_size=args.batch_size_laion,
shuffle=False,
num_workers=args.workers,
persistent_workers=False,
collate_fn=image_collate_fn,
)
round_fn = math.floor if floor else math.ceil
global_batch_size = args.batch_size_laion * args.world_size
num_batches = round_fn(LAION2B_NUM_SAMPLE / global_batch_size)
dataloader.num_batches = num_batches
return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch)
def get_dataset_fn(dataset_type):
if dataset_type == "mmc4":
raise NotImplementedError
elif dataset_type == "pile":
return get_pile_dataset
elif dataset_type == "ground_image_text":
return get_ground_laion_dataset
elif dataset_type == "image_text":
return get_image_text_pair_dataset
elif dataset_type == "vqav2":
raise NotImplementedError
elif dataset_type == "instruct":
return get_instruct_dataset
else:
raise ValueError(f"Unsupported dataset type: {dataset_type}")
def get_data(args, image_processor, tokenizer, dataset_type, epoch=0):
return get_dataset_fn(dataset_type)(
args, image_processor=image_processor, epoch=epoch, tokenizer=tokenizer
)
|