Spaces:
Runtime error
Runtime error
File size: 15,845 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Fine-tuning di un modello pre-addestrato
[[open-in-colab]]
Ci sono benefici significativi nell'usare un modello pre-addestrato. Si riducono i costi computazionali, l'impronta di carbonio e ti consente di usare modelli stato dell'arte senza doverli addestrare da zero. 🤗 Transformers consente l'accesso a migliaia di modelli pre-addestrati per un'ampia gamma di compiti. Quando usi un modello pre-addestrato, lo alleni su un dataset specifico per il tuo compito. Questo è conosciuto come fine-tuning, una tecnica di addestramento incredibilmente potente. In questa esercitazione, potrai fare il fine-tuning di un modello pre-addestrato, con un framework di deep learning a tua scelta:
* Fine-tuning di un modello pre-addestrato con 🤗 Transformers [`Trainer`].
* Fine-tuning di un modello pre-addestrato in TensorFlow con Keras.
* Fine-tuning di un modello pre-addestrato con PyTorch.
<a id='data-processing'></a>
## Preparare un dataset
<Youtube id="_BZearw7f0w"/>
Prima di poter fare il fine-tuning di un modello pre-addestrato, scarica un dataset e preparalo per l'addestramento. La precedente esercitazione ti ha mostrato come processare i dati per l'addestramento e adesso hai l'opportunità di metterti alla prova!
Inizia caricando il dataset [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full):
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("yelp_review_full")
>>> dataset["train"][100]
{'label': 0,
'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'}
```
Come già sai, hai bisogno di un tokenizer per processare il testo e includere una strategia di padding e truncation per gestire sequenze di lunghezza variabile. Per processare il dataset in un unico passo, usa il metodo [`map`](https://huggingface.co/docs/datasets/process.html#map) di 🤗 Datasets che applica la funzione di preprocessing all'intero dataset:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> def tokenize_function(examples):
... return tokenizer(examples["text"], padding="max_length", truncation=True)
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
```
Se vuoi, puoi creare un sottoinsieme più piccolo del dataset per il fine-tuning così da ridurre il tempo necessario:
```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```
<a id='trainer'></a>
## Addestramento
<frameworkcontent>
<pt>
<Youtube id="nvBXf7s7vTI"/>
🤗 Transformers mette a disposizione la classe [`Trainer`] ottimizzata per addestrare modelli 🤗 Transformers, rendendo semplice iniziare l'addestramento senza scrivere manualmente il tuo ciclo di addestramento. L'API [`Trainer`] supporta un'ampia gamma di opzioni e funzionalità di addestramento come logging, gradient accumulation e mixed precision.
Inizia caricando il tuo modello e specificando il numero di etichette (labels) attese. Nel dataset Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields), sai che ci sono cinque etichette:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```
<Tip>
Potresti vedere un warning dato che alcuni dei pesi pre-addestrati non sono stati utilizzati e altri pesi sono stati inizializzati casualmente. Non preoccuparti, è completamente normale! L'head pre-addestrata del modello BERT viene scartata e rimpiazzata da una classification head inizializzata casualmente. Farai il fine-tuning di questa nuova head del modello sul tuo compito di classificazione, trasferendogli la conoscenza del modello pre-addestrato.
</Tip>
### Iperparametri per il training
Successivamente, crea una classe [`TrainingArguments`] contenente tutti gli iperparametri che si possono regore nonché le variabili per attivare le differenti opzioni di addestramento. Per questa esercitazione puoi iniziare con gli [iperparametri](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) di ddestramento predefiniti, ma sentiti libero di sperimentare per trovare la configurazione ottimale per te.
Specifica dove salvare i checkpoints del tuo addestramento:
```py
>>> from transformers import TrainingArguments
>>> training_args = TrainingArguments(output_dir="test_trainer")
```
### Metriche
[`Trainer`] non valuta automaticamente le performance del modello durante l'addestramento. Dovrai passare a [`Trainer`] una funzione che calcola e restituisce le metriche. La libreria 🤗 Datasets mette a disposizione una semplice funzione [`accuracy`](https://huggingface.co/metrics/accuracy) che puoi caricare con la funzione `load_metric` (guarda questa [esercitazione](https://huggingface.co/docs/datasets/metrics.html) per maggiori informazioni):
```py
>>> import numpy as np
>>> from datasets import load_metric
>>> metric = load_metric("accuracy")
```
Richiama `compute` su `metric` per calcolare l'accuratezza delle tue previsioni. Prima di passare le tue previsioni a `compute`, hai bisogno di convertirle in logits (ricorda che tutti i modelli 🤗 Transformers restituiscono logits):
```py
>>> def compute_metrics(eval_pred):
... logits, labels = eval_pred
... predictions = np.argmax(logits, axis=-1)
... return metric.compute(predictions=predictions, references=labels)
```
Se preferisci monitorare le tue metriche di valutazione durante il fine-tuning, specifica il parametro `evaluation_strategy` nei tuoi training arguments per restituire le metriche di valutazione ad ogni epoca di addestramento:
```py
>>> from transformers import TrainingArguments, Trainer
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
```
### Trainer
Crea un oggetto [`Trainer`] col tuo modello, training arguments, dataset di training e test, e funzione di valutazione:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
Poi metti a punto il modello richiamando [`~transformers.Trainer.train`]:
```py
>>> trainer.train()
```
</pt>
<tf>
<a id='keras'></a>
<Youtube id="rnTGBy2ax1c"/>
I modelli 🤗 Transformers supportano anche l'addestramento in TensorFlow usando l'API di Keras.
### Convertire dataset nel formato per TensorFlow
Il [`DefaultDataCollator`] assembla tensori in lotti su cui il modello si addestrerà. Assicurati di specificare di restituire tensori per TensorFlow in `return_tensors`:
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator(return_tensors="tf")
```
<Tip>
[`Trainer`] usa [`DataCollatorWithPadding`] in maniera predefinita in modo da non dover specificare esplicitamente un collettore di dati.
</Tip>
Successivamente, converti i datasets tokenizzati in TensorFlow datasets con il metodo [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.to_tf_dataset). Specifica il tuo input in `columns` e le tue etichette in `label_cols`:
```py
>>> tf_train_dataset = small_train_dataset.to_tf_dataset(
... columns=["attention_mask", "input_ids", "token_type_ids"],
... label_cols=["labels"],
... shuffle=True,
... collate_fn=data_collator,
... batch_size=8,
... )
>>> tf_validation_dataset = small_eval_dataset.to_tf_dataset(
... columns=["attention_mask", "input_ids", "token_type_ids"],
... label_cols=["labels"],
... shuffle=False,
... collate_fn=data_collator,
... batch_size=8,
... )
```
### Compilazione e addestramento
Carica un modello TensorFlow col numero atteso di etichette:
```py
>>> import tensorflow as tf
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```
Poi compila e fai il fine-tuning del tuo modello usando [`fit`](https://keras.io/api/models/model_training_apis/) come faresti con qualsiasi altro modello di Keras:
```py
>>> model.compile(
... optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5),
... loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
... metrics=tf.metrics.SparseCategoricalAccuracy(),
... )
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3)
```
</tf>
</frameworkcontent>
<a id='pytorch_native'></a>
## Addestramento in PyTorch nativo
<frameworkcontent>
<pt>
<Youtube id="Dh9CL8fyG80"/>
[`Trainer`] si occupa del ciclo di addestramento e ti consente di mettere a punto un modello con una sola riga di codice. Per chi preferisse scrivere un proprio ciclo di addestramento personale, puoi anche fare il fine-tuning di un modello 🤗 Transformers in PyTorch nativo.
A questo punto, potresti avere bisogno di riavviare il tuo notebook o eseguire il seguente codice per liberare un po' di memoria:
```py
del model
del pytorch_model
del trainer
torch.cuda.empty_cache()
```
Successivamente, postprocessa manualmente il `tokenized_dataset` per prepararlo ad essere allenato.
1. Rimuovi la colonna `text` perché il modello non accetta testo grezzo come input:
```py
>>> tokenized_datasets = tokenized_datasets.remove_columns(["text"])
```
2. Rinomina la colonna `label` in `labels` perché il modello si aspetta che questo argomento si chiami `labels`:
```py
>>> tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
```
3. Imposta il formato del dataset per farti restituire tensori di PyTorch all'interno delle liste:
```py
>>> tokenized_datasets.set_format("torch")
```
Poi crea un piccolo sottocampione del dataset come visto precedentemente per velocizzare il fine-tuning:
```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```
### DataLoader
Crea un `DataLoader` per i tuoi datasets di train e test così puoi iterare sui lotti di dati:
```py
>>> from torch.utils.data import DataLoader
>>> train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
>>> eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)
```
Carica il tuo modello con il numero atteso di etichette:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```
### Ottimizzatore e learning rate scheduler
Crea un ottimizzatore e il learning rate scheduler per fare il fine-tuning del modello. Usa l'ottimizzatore [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) di PyTorch:
```py
>>> from torch.optim import AdamW
>>> optimizer = AdamW(model.parameters(), lr=5e-5)
```
Crea il learning rate scheduler predefinito da [`Trainer`]:
```py
>>> from transformers import get_scheduler
>>> num_epochs = 3
>>> num_training_steps = num_epochs * len(train_dataloader)
>>> lr_scheduler = get_scheduler(
... name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
... )
```
Infine specifica come `device` da usare una GPU se ne hai una. Altrimenti, l'addestramento su una CPU può richiedere diverse ore invece di un paio di minuti.
```py
>>> import torch
>>> device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
>>> model.to(device)
```
<Tip>
Ottieni l'accesso gratuito a una GPU sul cloud se non ne possiedi una usando un notebook sul web come [Colaboratory](https://colab.research.google.com/) o [SageMaker StudioLab](https://studiolab.sagemaker.aws/).
</Tip>
Ottimo, adesso possiamo addestrare! 🥳
### Training loop
Per tenere traccia dei tuoi progressi durante l'addestramento, usa la libreria [tqdm](https://tqdm.github.io/) per aggiungere una progress bar sopra il numero dei passi di addestramento:
```py
>>> from tqdm.auto import tqdm
>>> progress_bar = tqdm(range(num_training_steps))
>>> model.train()
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... batch = {k: v.to(device) for k, v in batch.items()}
... outputs = model(**batch)
... loss = outputs.loss
... loss.backward()
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
### Metriche
Proprio come è necessario aggiungere una funzione di valutazione del [`Trainer`], è necessario fare lo stesso quando si scrive il proprio ciclo di addestramento. Ma invece di calcolare e riportare la metrica alla fine di ogni epoca, questa volta accumulerai tutti i batch con [`add_batch`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=add_batch#datasets.Metric.add_batch) e calcolerai la metrica alla fine.
```py
>>> metric = load_metric("accuracy")
>>> model.eval()
>>> for batch in eval_dataloader:
... batch = {k: v.to(device) for k, v in batch.items()}
... with torch.no_grad():
... outputs = model(**batch)
... logits = outputs.logits
... predictions = torch.argmax(logits, dim=-1)
... metric.add_batch(predictions=predictions, references=batch["labels"])
>>> metric.compute()
```
</pt>
</frameworkcontent>
<a id='additional-resources'></a>
## Altre risorse
Per altri esempi sul fine-tuning, fai riferimento a:
- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) include scripts per addestrare compiti comuni di NLP in PyTorch e TensorFlow.
- [🤗 Transformers Notebooks](notebooks) contiene diversi notebooks su come mettere a punto un modello per compiti specifici in PyTorch e TensorFlow.
|