Spaces:
Runtime error
Runtime error
File size: 10,824 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Classificação de tokens
<Youtube id="wVHdVlPScxA"/>
A classificação de tokens atribui um rótulo a tokens individuais em uma frase. Uma das tarefas de classificação de tokens mais comuns é o Reconhecimento de Entidade Nomeada, também chamada de NER (sigla em inglês para Named Entity Recognition). O NER tenta encontrar um rótulo para cada entidade em uma frase, como uma pessoa, local ou organização.
Este guia mostrará como realizar o fine-tuning do [DistilBERT](https://huggingface.co/distilbert-base-uncased) no conjunto de dados [WNUT 17](https://huggingface.co/datasets/wnut_17) para detectar novas entidades.
<Tip>
Consulte a [página de tarefas de classificação de tokens](https://huggingface.co/tasks/token-classification) para obter mais informações sobre outras formas de classificação de tokens e seus modelos, conjuntos de dados e métricas associadas.
</Tip>
## Carregando o conjunto de dados WNUT 17
Carregue o conjunto de dados WNUT 17 da biblioteca 🤗 Datasets:
```py
>>> from datasets import load_dataset
>>> wnut = load_dataset("wnut_17")
```
E dê uma olhada em um exemplo:
```py
>>> wnut["train"][0]
{'id': '0',
'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.']
}
```
Cada número em `ner_tags` representa uma entidade. Converta o número em um rótulo para obter mais informações:
```py
>>> label_list = wnut["train"].features[f"ner_tags"].feature.names
>>> label_list
[
"O",
"B-corporation",
"I-corporation",
"B-creative-work",
"I-creative-work",
"B-group",
"I-group",
"B-location",
"I-location",
"B-person",
"I-person",
"B-product",
"I-product",
]
```
O `ner_tag` descreve uma entidade, como uma organização, local ou pessoa. A letra que prefixa cada `ner_tag` indica a posição do token da entidade:
- `B-` indica o início de uma entidade.
- `I-` indica que um token está contido dentro da mesma entidade (por exemplo, o token `State` pode fazer parte de uma entidade como `Empire State Building`).
- `0` indica que o token não corresponde a nenhuma entidade.
## Pré-processamento
<Youtube id="iY2AZYdZAr0"/>
Carregue o tokenizer do DistilBERT para processar os `tokens`:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
```
Como a entrada já foi dividida em palavras, defina `is_split_into_words=True` para tokenizar as palavras em subpalavras:
```py
>>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True)
>>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
>>> tokens
['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]']
```
Ao adicionar os tokens especiais `[CLS]` e `[SEP]` e a tokenização de subpalavras uma incompatibilidade é gerada entre a entrada e os rótulos. Uma única palavra correspondente a um único rótulo pode ser dividida em duas subpalavras. Você precisará realinhar os tokens e os rótulos da seguinte forma:
1. Mapeie todos os tokens para a palavra correspondente com o método [`word_ids`](https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.Encoding.word_ids).
2. Atribuindo o rótulo `-100` aos tokens especiais `[CLS]` e `[SEP]` para que a função de loss do PyTorch ignore eles.
3. Rotular apenas o primeiro token de uma determinada palavra. Atribuindo `-100` a outros subtokens da mesma palavra.
Aqui está como você pode criar uma função para realinhar os tokens e rótulos e truncar sequências para não serem maiores que o comprimento máximo de entrada do DistilBERT:
```py
>>> def tokenize_and_align_labels(examples):
... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
... labels = []
... for i, label in enumerate(examples[f"ner_tags"]):
... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word.
... previous_word_idx = None
... label_ids = []
... for word_idx in word_ids: # Set the special tokens to -100.
... if word_idx is None:
... label_ids.append(-100)
... elif word_idx != previous_word_idx: # Only label the first token of a given word.
... label_ids.append(label[word_idx])
... else:
... label_ids.append(-100)
... previous_word_idx = word_idx
... labels.append(label_ids)
... tokenized_inputs["labels"] = labels
... return tokenized_inputs
```
Use a função [`map`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map) do 🤗 Datasets para tokenizar e alinhar os rótulos em todo o conjunto de dados. Você pode acelerar a função `map` configurando `batched=True` para processar vários elementos do conjunto de dados de uma só vez:
```py
>>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True)
```
Use o [`DataCollatorForTokenClassification`] para criar um batch de exemplos. Ele também *preencherá dinamicamente* seu texto e rótulos para o comprimento do elemento mais longo em seu batch, para que tenham um comprimento uniforme. Embora seja possível preencher seu texto na função `tokenizer` configurando `padding=True`, o preenchimento dinâmico é mais eficiente.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorForTokenClassification
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorForTokenClassification
>>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf")
```
</tf>
</frameworkcontent>
## Treinamento
<frameworkcontent>
<pt>
Carregue o DistilBERT com o [`AutoModelForTokenClassification`] junto com o número de rótulos esperados:
```py
>>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased", num_labels=14)
```
<Tip>
Se você não estiver familiarizado com o fine-tuning de um modelo com o [`Trainer`], dê uma olhada no tutorial básico [aqui](../training#finetune-with-trainer)!
</Tip>
Nesse ponto, restam apenas três passos:
1. Definir seus hiperparâmetros de treinamento em [`TrainingArguments`].
2. Passar os argumentos de treinamento para o [`Trainer`] junto com o modelo, conjunto de dados, tokenizador e o data collator.
3. Chamar a função [`~Trainer.train`] para executar o fine-tuning do seu modelo.
```py
>>> training_args = TrainingArguments(
... output_dir="./results",
... evaluation_strategy="epoch",
... learning_rate=2e-5,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... weight_decay=0.01,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=tokenized_wnut["train"],
... eval_dataset=tokenized_wnut["test"],
... tokenizer=tokenizer,
... data_collator=data_collator,
... )
>>> trainer.train()
```
</pt>
<tf>
Para executar o fine-tuning de um modelo no TensorFlow, comece convertendo seu conjunto de dados para o formato `tf.data.Dataset` com [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.to_tf_dataset). Nessa execução você deverá especificar as entradas e rótulos (no parâmetro `columns`), se deseja embaralhar o conjunto de dados, o tamanho do batch e o data collator:
```py
>>> tf_train_set = tokenized_wnut["train"].to_tf_dataset(
... columns=["attention_mask", "input_ids", "labels"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_validation_set = tokenized_wnut["validation"].to_tf_dataset(
... columns=["attention_mask", "input_ids", "labels"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
<Tip>
Se você não estiver familiarizado com o fine-tuning de um modelo com o Keras, dê uma olhada no tutorial básico [aqui](training#finetune-with-keras)!
</Tip>
Configure o otimizador e alguns hiperparâmetros de treinamento:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_train_epochs = 3
>>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs
>>> optimizer, lr_schedule = create_optimizer(
... init_lr=2e-5,
... num_train_steps=num_train_steps,
... weight_decay_rate=0.01,
... num_warmup_steps=0,
... )
```
Carregue o DistilBERT com o [`TFAutoModelForTokenClassification`] junto com o número de rótulos esperados:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
```
Configure o modelo para treinamento com o método [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)
```
Chame o método [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para executar o fine-tuning do modelo:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3)
```
</tf>
</frameworkcontent>
<Tip>
Para obter um exemplo mais aprofundado de como executar o fine-tuning de um modelo para classificação de tokens, dê uma olhada nesse [notebook utilizando PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb) ou nesse [notebook utilizando TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
</Tip> |