Spaces:
Runtime error
Runtime error
File size: 23,942 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for multimodal multiclass prediction on MM-IMDB dataset."""
import argparse
import glob
import json
import logging
import os
import random
import numpy as np
import torch
from sklearn.metrics import f1_score
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from utils_mmimdb import ImageEncoder, JsonlDataset, collate_fn, get_image_transforms, get_mmimdb_labels
import transformers
from transformers import (
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModel,
AutoTokenizer,
MMBTConfig,
MMBTForClassification,
get_linear_schedule_with_warmup,
)
from transformers.trainer_utils import is_main_process
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer, criterion):
"""Train the model"""
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=args.train_batch_size,
collate_fn=collate_fn,
num_workers=args.num_workers,
)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
best_f1, n_no_improve = 0, 0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
labels = batch[5]
inputs = {
"input_ids": batch[0],
"input_modal": batch[2],
"attention_mask": batch[1],
"modal_start_tokens": batch[3],
"modal_end_tokens": batch[4],
}
outputs = model(**inputs)
logits = outputs[0] # model outputs are always tuple in transformers (see doc)
loss = criterion(logits, labels)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logs = {}
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer, criterion)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
for key, value in logs.items():
tb_writer.add_scalar(key, value, global_step)
print(json.dumps({**logs, **{"step": global_step}}))
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
torch.save(model_to_save.state_dict(), os.path.join(output_dir, WEIGHTS_NAME))
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank == -1:
results = evaluate(args, model, tokenizer, criterion)
if results["micro_f1"] > best_f1:
best_f1 = results["micro_f1"]
n_no_improve = 0
else:
n_no_improve += 1
if n_no_improve > args.patience:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, criterion, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_examples(args, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn
)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel):
model = nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
batch = tuple(t.to(args.device) for t in batch)
labels = batch[5]
inputs = {
"input_ids": batch[0],
"input_modal": batch[2],
"attention_mask": batch[1],
"modal_start_tokens": batch[3],
"modal_end_tokens": batch[4],
}
outputs = model(**inputs)
logits = outputs[0] # model outputs are always tuple in transformers (see doc)
tmp_eval_loss = criterion(logits, labels)
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = torch.sigmoid(logits).detach().cpu().numpy() > 0.5
out_label_ids = labels.detach().cpu().numpy()
else:
preds = np.append(preds, torch.sigmoid(logits).detach().cpu().numpy() > 0.5, axis=0)
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
result = {
"loss": eval_loss,
"macro_f1": f1_score(out_label_ids, preds, average="macro"),
"micro_f1": f1_score(out_label_ids, preds, average="micro"),
}
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def load_examples(args, tokenizer, evaluate=False):
path = os.path.join(args.data_dir, "dev.jsonl" if evaluate else "train.jsonl")
transforms = get_image_transforms()
labels = get_mmimdb_labels()
dataset = JsonlDataset(path, tokenizer, transforms, labels, args.max_seq_length - args.num_image_embeds - 2)
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .jsonl files for MMIMDB.",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default=None,
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--num_image_embeds", default=1, type=int, help="Number of Image Embeddings from the Image Encoder"
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument("--patience", default=5, type=int, help="Patience for Early Stopping.")
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument("--num_workers", type=int, default=8, help="number of worker threads for dataloading")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Setup model
labels = get_mmimdb_labels()
num_labels = len(labels)
transformer_config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir,
)
transformer = AutoModel.from_pretrained(
args.model_name_or_path, config=transformer_config, cache_dir=args.cache_dir
)
img_encoder = ImageEncoder(args)
config = MMBTConfig(transformer_config, num_labels=num_labels)
model = MMBTForClassification(config, transformer, img_encoder)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_examples(args, tokenizer, evaluate=False)
label_frequences = train_dataset.get_label_frequencies()
label_frequences = [label_frequences[l] for l in labels]
label_weights = (
torch.tensor(label_frequences, device=args.device, dtype=torch.float) / len(train_dataset)
) ** -1
criterion = nn.BCEWithLogitsLoss(pos_weight=label_weights)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, criterion)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, WEIGHTS_NAME))
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = MMBTForClassification(config, transformer, img_encoder)
model.load_state_dict(torch.load(os.path.join(args.output_dir, WEIGHTS_NAME)))
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = [
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = MMBTForClassification(config, transformer, img_encoder)
model.load_state_dict(torch.load(checkpoint))
model.to(args.device)
result = evaluate(args, model, tokenizer, criterion, prefix=prefix)
result = {k + "_{}".format(global_step): v for k, v in result.items()}
results.update(result)
return results
if __name__ == "__main__":
main()
|