Spaces:
Runtime error
Runtime error
File size: 12,326 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# coding=utf-8
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for training models with pytorch-quantization"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
logger = logging.getLogger(__name__)
name_width = 50 # max width of layer names
qname_width = 70 # max width of quantizer names
# ========================================== Quant Trainer API ==========================================
def add_arguments(parser):
"""Add arguments to parser for functions defined in quant_trainer."""
group = parser.add_argument_group("quant_trainer arguments")
group.add_argument("--wprec", type=int, default=8, help="weight precision")
group.add_argument("--aprec", type=int, default=8, help="activation precision")
group.add_argument("--quant-per-tensor", action="store_true", help="per tensor weight scaling")
group.add_argument("--quant-disable", action="store_true", help="disable all quantizers")
group.add_argument("--quant-disable-embeddings", action="store_true", help="disable all embeddings quantizers")
group.add_argument("--quant-disable-keyword", type=str, nargs="+", help="disable quantizers by keyword")
group.add_argument("--quant-disable-layer-module", type=str, help="disable quantizers by keyword under layer.\d+.")
group.add_argument("--quant-enable-layer-module", type=str, help="enable quantizers by keyword under layer.\d+.")
group.add_argument("--calibrator", default="max", help="which quantization range calibrator to use")
group.add_argument("--percentile", default=None, type=float, help="percentile for PercentileCalibrator")
group.add_argument("--fuse-qkv", action="store_true", help="use the same scale factor for qkv")
group.add_argument("--clip-gelu", metavar="N", type=float, help="clip gelu output maximum value to N")
group.add_argument(
"--recalibrate-weights",
action="store_true",
help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
),
)
def set_default_quantizers(args):
"""Set default quantizers before creating the model."""
if args.calibrator == "max":
calib_method = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator")
calib_method = "histogram"
elif args.calibrator == "mse":
calib_method = "histogram"
else:
raise ValueError(f"Invalid calibrator {args.calibrator}")
input_desc = QuantDescriptor(num_bits=args.aprec, calib_method=calib_method)
weight_desc = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)))
quant_nn.QuantLinear.set_default_quant_desc_input(input_desc)
quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc)
def configure_model(model, args, calib=False, eval=False):
"""Function called before the training loop."""
logger.info("Configuring Model for Quantization")
logger.info(f"using quantization package {pytorch_quantization.__file__}")
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(model, ["embeddings"], which="weight", _disabled=True)
if args.quant_disable:
set_quantizer_by_name(model, [""], _disabled=True)
if args.quant_disable_keyword:
set_quantizer_by_name(model, args.quant_disable_keyword, _disabled=True)
if args.quant_disable_layer_module:
set_quantizer_by_name(model, ["layer.\d+." + args.quant_disable_layer_module], _disabled=True)
if args.quant_enable_layer_module:
set_quantizer_by_name(model, ["layer.\d+." + args.quant_enable_layer_module], _disabled=False)
if args.recalibrate_weights:
recalibrate_weights(model)
if args.fuse_qkv:
fuse_qkv(model, args)
if args.clip_gelu:
clip_gelu(model, args.clip_gelu)
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(model)
def enable_calibration(model):
"""Enable calibration of all *_input_quantizer modules in model."""
logger.info("Enabling Calibration")
for name, module in model.named_modules():
if name.endswith("_quantizer"):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"{name:80}: {module}")
def finish_calibration(model, args):
"""Disable calibration and load amax for all "*_input_quantizer modules in model."""
logger.info("Loading calibrated amax")
for name, module in model.named_modules():
if name.endswith("_quantizer"):
if module._calibrator is not None:
if isinstance(module._calibrator, calib.MaxCalibrator):
module.load_calib_amax()
else:
module.load_calib_amax("percentile", percentile=args.percentile)
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(model)
# ========================================== Helper Function ==========================================
def fuse_qkv(model, args):
"""Adjust quantization ranges to match an implementation where the QKV projections are implemented with a single GEMM.
Force the weight and output scale factors to match by taking the max of (Q,K,V).
"""
def fuse3(qq, qk, qv):
for mod in [qq, qk, qv]:
if not hasattr(mod, "_amax"):
print(" WARNING: NO AMAX BUFFER")
return
q = qq._amax.detach().item()
k = qk._amax.detach().item()
v = qv._amax.detach().item()
amax = max(q, k, v)
qq._amax.fill_(amax)
qk._amax.fill_(amax)
qv._amax.fill_(amax)
logger.info(f" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}")
for name, mod in model.named_modules():
if name.endswith(".attention.self"):
logger.info(f"FUSE_QKV: {name:{name_width}}")
fuse3(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer)
if args.quant_per_tensor:
fuse3(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer)
def clip_gelu(model, maxval):
"""Clip activations generated by GELU to maxval when quantized.
Implemented by adjusting the amax of the following input_quantizer.
"""
for name, mod in model.named_modules():
if name.endswith(".output.dense") and not name.endswith("attention.output.dense"):
amax_init = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=maxval)
amax = mod._input_quantizer._amax.data.detach().item()
logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}")
def expand_amax(model):
"""Expand per-tensor amax to be per channel, where each channel is assigned the per-tensor amax."""
for name, mod in model.named_modules():
if hasattr(mod, "_weight_quantizer") and mod._weight_quantizer.axis is not None:
k = mod.weight.shape[0]
amax = mod._weight_quantizer._amax.detach()
mod._weight_quantizer._amax = torch.ones(k, dtype=amax.dtype, device=amax.device) * amax
print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}")
def recalibrate_weights(model):
"""Performs max calibration on the weights and updates amax."""
for name, mod in model.named_modules():
if hasattr(mod, "_weight_quantizer"):
if not hasattr(mod.weight_quantizer, "_amax"):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER")
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
axis_set = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis)
reduce_axis = set(range(len(mod.weight.size()))) - axis_set
amax = pytorch_quantization.utils.reduce_amax(mod.weight, axis=reduce_axis, keepdims=True).detach()
logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}")
mod._weight_quantizer._amax = amax
def print_model_summary(model, name_width=25, line_width=180, ignore=None):
"""Print model quantization configuration."""
if ignore is None:
ignore = []
elif not isinstance(ignore, list):
ignore = [ignore]
name_width = 0
for name, mod in model.named_modules():
if not hasattr(mod, "weight"):
continue
name_width = max(name_width, len(name))
for name, mod in model.named_modules():
input_q = getattr(mod, "_input_quantizer", None)
weight_q = getattr(mod, "_weight_quantizer", None)
if not hasattr(mod, "weight"):
continue
if type(mod) in ignore:
continue
if [True for s in ignore if type(s) is str and s in name]:
continue
act_str = f"Act:{input_q.extra_repr()}"
wgt_str = f"Wgt:{weight_q.extra_repr()}"
s = f"{name:{name_width}} {act_str} {wgt_str}"
if len(s) <= line_width:
logger.info(s)
else:
logger.info(f"{name:{name_width}} {act_str}")
logger.info(f'{" ":{name_width}} {wgt_str}')
def print_quant_summary(model):
"""Print summary of all quantizer modules in the model."""
count = 0
for name, mod in model.named_modules():
if isinstance(mod, pytorch_quantization.nn.TensorQuantizer):
print(f"{name:80} {mod}")
count += 1
print(f"{count} TensorQuantizers found in model")
def set_quantizer(name, mod, quantizer, k, v):
"""Set attributes for mod.quantizer."""
quantizer_mod = getattr(mod, quantizer, None)
if quantizer_mod is not None:
assert hasattr(quantizer_mod, k)
setattr(quantizer_mod, k, v)
else:
logger.warning(f"{name} has no {quantizer}")
def set_quantizers(name, mod, which="both", **kwargs):
"""Set quantizer attributes for mod."""
s = f"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
if which in ["input", "both"]:
set_quantizer(name, mod, "_input_quantizer", k, v)
if which in ["weight", "both"]:
set_quantizer(name, mod, "_weight_quantizer", k, v)
logger.info(s)
def set_quantizer_by_name(model, names, **kwargs):
"""Set quantizer attributes for layers where name contains a substring in names."""
for name, mod in model.named_modules():
if hasattr(mod, "_input_quantizer") or hasattr(mod, "_weight_quantizer"):
for n in names:
if re.search(n, name):
set_quantizers(name, mod, **kwargs)
elif name.endswith("_quantizer"):
for n in names:
if re.search(n, name):
s = f"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
setattr(mod, k, v)
logger.info(s)
|