File size: 12,326 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# coding=utf-8
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for training models with pytorch-quantization"""
import logging
import re

import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor


logger = logging.getLogger(__name__)

name_width = 50  # max width of layer names
qname_width = 70  # max width of quantizer names

# ========================================== Quant Trainer API ==========================================


def add_arguments(parser):
    """Add arguments to parser for functions defined in quant_trainer."""

    group = parser.add_argument_group("quant_trainer arguments")
    group.add_argument("--wprec", type=int, default=8, help="weight precision")
    group.add_argument("--aprec", type=int, default=8, help="activation precision")
    group.add_argument("--quant-per-tensor", action="store_true", help="per tensor weight scaling")
    group.add_argument("--quant-disable", action="store_true", help="disable all quantizers")
    group.add_argument("--quant-disable-embeddings", action="store_true", help="disable all embeddings quantizers")
    group.add_argument("--quant-disable-keyword", type=str, nargs="+", help="disable quantizers by keyword")
    group.add_argument("--quant-disable-layer-module", type=str, help="disable quantizers by keyword under layer.\d+.")
    group.add_argument("--quant-enable-layer-module", type=str, help="enable quantizers by keyword under layer.\d+.")
    group.add_argument("--calibrator", default="max", help="which quantization range calibrator to use")
    group.add_argument("--percentile", default=None, type=float, help="percentile for PercentileCalibrator")
    group.add_argument("--fuse-qkv", action="store_true", help="use the same scale factor for qkv")
    group.add_argument("--clip-gelu", metavar="N", type=float, help="clip gelu output maximum value to N")
    group.add_argument(
        "--recalibrate-weights",
        action="store_true",
        help=(
            "recalibrate weight amaxes by taking the max of the weights."
            " amaxes will be computed with the current quantization granularity (axis)."
        ),
    )


def set_default_quantizers(args):
    """Set default quantizers before creating the model."""

    if args.calibrator == "max":
        calib_method = "max"
    elif args.calibrator == "percentile":
        if args.percentile is None:
            raise ValueError("Specify --percentile when using percentile calibrator")
        calib_method = "histogram"
    elif args.calibrator == "mse":
        calib_method = "histogram"
    else:
        raise ValueError(f"Invalid calibrator {args.calibrator}")

    input_desc = QuantDescriptor(num_bits=args.aprec, calib_method=calib_method)
    weight_desc = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)))
    quant_nn.QuantLinear.set_default_quant_desc_input(input_desc)
    quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc)


def configure_model(model, args, calib=False, eval=False):
    """Function called before the training loop."""

    logger.info("Configuring Model for Quantization")
    logger.info(f"using quantization package {pytorch_quantization.__file__}")

    if not calib:
        if args.quant_disable_embeddings:
            set_quantizer_by_name(model, ["embeddings"], which="weight", _disabled=True)

        if args.quant_disable:
            set_quantizer_by_name(model, [""], _disabled=True)

        if args.quant_disable_keyword:
            set_quantizer_by_name(model, args.quant_disable_keyword, _disabled=True)

        if args.quant_disable_layer_module:
            set_quantizer_by_name(model, ["layer.\d+." + args.quant_disable_layer_module], _disabled=True)

        if args.quant_enable_layer_module:
            set_quantizer_by_name(model, ["layer.\d+." + args.quant_enable_layer_module], _disabled=False)

        if args.recalibrate_weights:
            recalibrate_weights(model)

        if args.fuse_qkv:
            fuse_qkv(model, args)

    if args.clip_gelu:
        clip_gelu(model, args.clip_gelu)

    # if args.local_rank in [-1, 0] and not calib:
    print_quant_summary(model)


def enable_calibration(model):
    """Enable calibration of all *_input_quantizer modules in model."""

    logger.info("Enabling Calibration")
    for name, module in model.named_modules():
        if name.endswith("_quantizer"):
            if module._calibrator is not None:
                module.disable_quant()
                module.enable_calib()
            else:
                module.disable()
            logger.info(f"{name:80}: {module}")


def finish_calibration(model, args):
    """Disable calibration and load amax for all "*_input_quantizer modules in model."""

    logger.info("Loading calibrated amax")
    for name, module in model.named_modules():
        if name.endswith("_quantizer"):
            if module._calibrator is not None:
                if isinstance(module._calibrator, calib.MaxCalibrator):
                    module.load_calib_amax()
                else:
                    module.load_calib_amax("percentile", percentile=args.percentile)
                module.enable_quant()
                module.disable_calib()
            else:
                module.enable()
    model.cuda()
    print_quant_summary(model)


# ========================================== Helper Function ==========================================


def fuse_qkv(model, args):
    """Adjust quantization ranges to match an implementation where the QKV projections are implemented with a single GEMM.
    Force the weight and output scale factors to match by taking the max of (Q,K,V).
    """

    def fuse3(qq, qk, qv):
        for mod in [qq, qk, qv]:
            if not hasattr(mod, "_amax"):
                print("          WARNING: NO AMAX BUFFER")
                return
        q = qq._amax.detach().item()
        k = qk._amax.detach().item()
        v = qv._amax.detach().item()

        amax = max(q, k, v)
        qq._amax.fill_(amax)
        qk._amax.fill_(amax)
        qv._amax.fill_(amax)
        logger.info(f"          q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}")

    for name, mod in model.named_modules():
        if name.endswith(".attention.self"):
            logger.info(f"FUSE_QKV: {name:{name_width}}")
            fuse3(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer)
            if args.quant_per_tensor:
                fuse3(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer)


def clip_gelu(model, maxval):
    """Clip activations generated by GELU to maxval when quantized.
    Implemented by adjusting the amax of the following input_quantizer.
    """

    for name, mod in model.named_modules():
        if name.endswith(".output.dense") and not name.endswith("attention.output.dense"):
            amax_init = mod._input_quantizer._amax.data.detach().item()
            mod._input_quantizer._amax.data.detach().clamp_(max=maxval)
            amax = mod._input_quantizer._amax.data.detach().item()
            logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}")


def expand_amax(model):
    """Expand per-tensor amax to be per channel, where each channel is assigned the per-tensor amax."""

    for name, mod in model.named_modules():
        if hasattr(mod, "_weight_quantizer") and mod._weight_quantizer.axis is not None:
            k = mod.weight.shape[0]
            amax = mod._weight_quantizer._amax.detach()
            mod._weight_quantizer._amax = torch.ones(k, dtype=amax.dtype, device=amax.device) * amax
            print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}")


def recalibrate_weights(model):
    """Performs max calibration on the weights and updates amax."""

    for name, mod in model.named_modules():
        if hasattr(mod, "_weight_quantizer"):
            if not hasattr(mod.weight_quantizer, "_amax"):
                print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER")
                continue

            # determine which axes to reduce across
            # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
            axis_set = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis)
            reduce_axis = set(range(len(mod.weight.size()))) - axis_set
            amax = pytorch_quantization.utils.reduce_amax(mod.weight, axis=reduce_axis, keepdims=True).detach()
            logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}")
            mod._weight_quantizer._amax = amax


def print_model_summary(model, name_width=25, line_width=180, ignore=None):
    """Print model quantization configuration."""

    if ignore is None:
        ignore = []
    elif not isinstance(ignore, list):
        ignore = [ignore]

    name_width = 0
    for name, mod in model.named_modules():
        if not hasattr(mod, "weight"):
            continue
        name_width = max(name_width, len(name))

    for name, mod in model.named_modules():
        input_q = getattr(mod, "_input_quantizer", None)
        weight_q = getattr(mod, "_weight_quantizer", None)
        if not hasattr(mod, "weight"):
            continue
        if type(mod) in ignore:
            continue
        if [True for s in ignore if type(s) is str and s in name]:
            continue
        act_str = f"Act:{input_q.extra_repr()}"
        wgt_str = f"Wgt:{weight_q.extra_repr()}"
        s = f"{name:{name_width}} {act_str} {wgt_str}"
        if len(s) <= line_width:
            logger.info(s)
        else:
            logger.info(f"{name:{name_width}} {act_str}")
            logger.info(f'{"  ":{name_width}} {wgt_str}')


def print_quant_summary(model):
    """Print summary of all quantizer modules in the model."""

    count = 0
    for name, mod in model.named_modules():
        if isinstance(mod, pytorch_quantization.nn.TensorQuantizer):
            print(f"{name:80} {mod}")
            count += 1
    print(f"{count} TensorQuantizers found in model")


def set_quantizer(name, mod, quantizer, k, v):
    """Set attributes for mod.quantizer."""

    quantizer_mod = getattr(mod, quantizer, None)
    if quantizer_mod is not None:
        assert hasattr(quantizer_mod, k)
        setattr(quantizer_mod, k, v)
    else:
        logger.warning(f"{name} has no {quantizer}")


def set_quantizers(name, mod, which="both", **kwargs):
    """Set quantizer attributes for mod."""

    s = f"Warning: changing {which} quantizers of {name:{qname_width}}"
    for k, v in kwargs.items():
        s += f" {k}={v}"
        if which in ["input", "both"]:
            set_quantizer(name, mod, "_input_quantizer", k, v)
        if which in ["weight", "both"]:
            set_quantizer(name, mod, "_weight_quantizer", k, v)
    logger.info(s)


def set_quantizer_by_name(model, names, **kwargs):
    """Set quantizer attributes for layers where name contains a substring in names."""

    for name, mod in model.named_modules():
        if hasattr(mod, "_input_quantizer") or hasattr(mod, "_weight_quantizer"):
            for n in names:
                if re.search(n, name):
                    set_quantizers(name, mod, **kwargs)
        elif name.endswith("_quantizer"):
            for n in names:
                if re.search(n, name):
                    s = f"Warning: changing {name:{name_width}}"
                    for k, v in kwargs.items():
                        s += f" {k}={v}"
                        setattr(mod, k, v)
                    logger.info(s)