File size: 2,637 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# coding=utf-8
# Copyright 2021 HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest

from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir

from ...test_tokenization_common import TokenizerTesterMixin


SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe.model")


class BartphoTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = BartphoTokenizer
    test_rust_tokenizer = False
    test_sentencepiece = True

    def setUp(self):
        super().setUp()

        vocab = ["▁This", "▁is", "▁a", "▁t", "est"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.monolingual_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"])
        with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp:
            for token in vocab_tokens:
                fp.write(f"{token} {vocab_tokens[token]}\n")

        tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map)
        tokenizer.save_pretrained(self.tmpdirname)

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return BartphoTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        input_text = "This is a là test"
        output_text = "This is a<unk><unk> test"
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map)
        text = "This is a là test"
        bpe_tokens = "▁This ▁is ▁a ▁l à ▁t est".split()
        tokens = tokenizer.tokenize(text)
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + [tokenizer.unk_token]
        input_bpe_tokens = [4, 5, 6, 3, 3, 7, 8, 3]
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)