File size: 10,632 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
import re
import unittest

from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow

from ...test_tokenization_common import TokenizerTesterMixin


@require_tokenizers
class CodeGenTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = CodeGenTokenizer
    rust_tokenizer_class = CodeGenTokenizerFast
    test_rust_tokenizer = True
    from_pretrained_kwargs = {"add_prefix_space": True}
    test_seq2seq = False

    def setUp(self):
        super().setUp()

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
            "<|endoftext|>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return CodeGenTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        input_text = "lower newer"
        output_text = "lower newer"
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
        text = "lower newer"
        bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
        tokens = tokenizer.tokenize(text, add_prefix_space=True)
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + [tokenizer.unk_token]
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)

        sequence = "lower newer"

        # Testing tokenization
        tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        # Testing conversion to ids without special tokens
        ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        # Testing conversion to ids with special tokens
        rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
        ids = tokenizer.encode(sequence, add_prefix_space=True)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

        # Testing the unknown token
        input_tokens = tokens + [rust_tokenizer.unk_token]
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
        self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)

    def test_pretokenized_inputs(self, *args, **kwargs):
        # It's very difficult to mix/test pretokenization with byte-level
        # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string)
        pass

    def test_padding(self, max_length=15):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Simple input
                s = "This is a simple input"
                s2 = ["This is a simple input 1", "This is a simple input 2"]
                p = ("This is a simple input", "This is a pair")
                p2 = [
                    ("This is a simple input 1", "This is a simple input 2"),
                    ("This is a simple pair 1", "This is a simple pair 2"),
                ]

                # Simple input tests
                self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    s2,
                    max_length=max_length,
                    padding="max_length",
                )

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    p2,
                    max_length=max_length,
                    padding="max_length",
                )

    def test_padding_if_pad_token_set_slow(self):
        tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>")

        # Simple input
        s = "This is a simple input"
        s2 = ["This is a simple input looooooooong", "This is a simple input"]
        p = ("This is a simple input", "This is a pair")
        p2 = [
            ("This is a simple input loooooong", "This is a simple input"),
            ("This is a simple pair loooooong", "This is a simple pair"),
        ]

        pad_token_id = tokenizer.pad_token_id

        out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np")
        out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np")
        out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np")
        out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np")

        # s
        # test single string max_length padding
        self.assertEqual(out_s["input_ids"].shape[-1], 30)
        self.assertTrue(pad_token_id in out_s["input_ids"])
        self.assertTrue(0 in out_s["attention_mask"])

        # s2
        # test automatic padding
        self.assertEqual(out_s2["input_ids"].shape[-1], 33)
        # long slice doesn't have padding
        self.assertFalse(pad_token_id in out_s2["input_ids"][0])
        self.assertFalse(0 in out_s2["attention_mask"][0])
        # short slice does have padding
        self.assertTrue(pad_token_id in out_s2["input_ids"][1])
        self.assertTrue(0 in out_s2["attention_mask"][1])

        # p
        # test single pair max_length padding
        self.assertEqual(out_p["input_ids"].shape[-1], 60)
        self.assertTrue(pad_token_id in out_p["input_ids"])
        self.assertTrue(0 in out_p["attention_mask"])

        # p2
        # test automatic padding pair
        self.assertEqual(out_p2["input_ids"].shape[-1], 52)
        # long slice pair doesn't have padding
        self.assertFalse(pad_token_id in out_p2["input_ids"][0])
        self.assertFalse(0 in out_p2["attention_mask"][0])
        # short slice pair does have padding
        self.assertTrue(pad_token_id in out_p2["input_ids"][1])
        self.assertTrue(0 in out_p2["attention_mask"][1])

    def test_add_bos_token_slow(self):
        bos_token = "$$$"
        tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True)

        s = "This is a simple input"
        s2 = ["This is a simple input 1", "This is a simple input 2"]

        bos_token_id = tokenizer.bos_token_id

        out_s = tokenizer(s)
        out_s2 = tokenizer(s2)

        self.assertEqual(out_s.input_ids[0], bos_token_id)
        self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids))

        decode_s = tokenizer.decode(out_s.input_ids)
        decode_s2 = tokenizer.batch_decode(out_s2.input_ids)

        self.assertEqual(decode_s.split()[0], bos_token)
        self.assertTrue(all(d.split()[0] == bos_token for d in decode_s2))

    @slow
    def test_truncation(self):
        tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono")

        text = "\nif len_a > len_b:\n    result = a\nelse:\n    result = b\n\n\n\n#"
        expected_trucated_text = "\nif len_a > len_b:      result = a\nelse:      result = b"

        input_ids = tokenizer.encode(text)
        truncation_pattern = ["^#", re.escape("<|endoftext|>"), "^'''", '^"""', "\n\n\n"]
        decoded_text = tokenizer.decode(input_ids, truncate_before_pattern=truncation_pattern)
        self.assertEqual(decoded_text, expected_trucated_text)

    # tokenizer has no padding token
    def test_padding_different_model_input_name(self):
        pass