Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Finetuning a 🤗 Flax Transformers model for sequence classification on GLUE.""" | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
import time | |
from dataclasses import dataclass, field | |
from pathlib import Path | |
from typing import Any, Callable, Dict, Optional, Tuple | |
import datasets | |
import evaluate | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
import optax | |
from datasets import load_dataset | |
from flax import struct, traverse_util | |
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate | |
from flax.training import train_state | |
from flax.training.common_utils import get_metrics, onehot, shard | |
from huggingface_hub import Repository, create_repo | |
from tqdm import tqdm | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoTokenizer, | |
FlaxAutoModelForSequenceClassification, | |
HfArgumentParser, | |
PretrainedConfig, | |
TrainingArguments, | |
is_tensorboard_available, | |
) | |
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry | |
logger = logging.getLogger(__name__) | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.28.0") | |
Array = Any | |
Dataset = datasets.arrow_dataset.Dataset | |
PRNGKey = Any | |
task_to_keys = { | |
"cola": ("sentence", None), | |
"mnli": ("premise", "hypothesis"), | |
"mrpc": ("sentence1", "sentence2"), | |
"qnli": ("question", "sentence"), | |
"qqp": ("question1", "question2"), | |
"rte": ("sentence1", "sentence2"), | |
"sst2": ("sentence", None), | |
"stsb": ("sentence1", "sentence2"), | |
"wnli": ("sentence1", "sentence2"), | |
} | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
use_slow_tokenizer: Optional[bool] = field( | |
default=False, | |
metadata={"help": "If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library)."}, | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
task_name: Optional[str] = field( | |
default=None, metadata={"help": f"The name of the glue task to train on. choices {list(task_to_keys.keys())}"} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
train_file: Optional[str] = field( | |
default=None, metadata={"help": "The input training data file (a csv or JSON file)."} | |
) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, | |
) | |
text_column_name: Optional[str] = field( | |
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} | |
) | |
label_column_name: Optional[str] = field( | |
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_seq_length: int = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. If set, sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
) | |
}, | |
) | |
def __post_init__(self): | |
if self.task_name is None and self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
self.task_name = self.task_name.lower() if type(self.task_name) == str else self.task_name | |
def create_train_state( | |
model: FlaxAutoModelForSequenceClassification, | |
learning_rate_fn: Callable[[int], float], | |
is_regression: bool, | |
num_labels: int, | |
weight_decay: float, | |
) -> train_state.TrainState: | |
"""Create initial training state.""" | |
class TrainState(train_state.TrainState): | |
"""Train state with an Optax optimizer. | |
The two functions below differ depending on whether the task is classification | |
or regression. | |
Args: | |
logits_fn: Applied to last layer to obtain the logits. | |
loss_fn: Function to compute the loss. | |
""" | |
logits_fn: Callable = struct.field(pytree_node=False) | |
loss_fn: Callable = struct.field(pytree_node=False) | |
# We use Optax's "masking" functionality to not apply weight decay | |
# to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
# mask boolean with the same structure as the parameters. | |
# The mask is True for parameters that should be decayed. | |
def decay_mask_fn(params): | |
flat_params = traverse_util.flatten_dict(params) | |
# find out all LayerNorm parameters | |
layer_norm_candidates = ["layernorm", "layer_norm", "ln"] | |
layer_norm_named_params = { | |
layer[-2:] | |
for layer_norm_name in layer_norm_candidates | |
for layer in flat_params.keys() | |
if layer_norm_name in "".join(layer).lower() | |
} | |
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} | |
return traverse_util.unflatten_dict(flat_mask) | |
tx = optax.adamw( | |
learning_rate=learning_rate_fn, b1=0.9, b2=0.999, eps=1e-6, weight_decay=weight_decay, mask=decay_mask_fn | |
) | |
if is_regression: | |
def mse_loss(logits, labels): | |
return jnp.mean((logits[..., 0] - labels) ** 2) | |
return TrainState.create( | |
apply_fn=model.__call__, | |
params=model.params, | |
tx=tx, | |
logits_fn=lambda logits: logits[..., 0], | |
loss_fn=mse_loss, | |
) | |
else: # Classification. | |
def cross_entropy_loss(logits, labels): | |
xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels)) | |
return jnp.mean(xentropy) | |
return TrainState.create( | |
apply_fn=model.__call__, | |
params=model.params, | |
tx=tx, | |
logits_fn=lambda logits: logits.argmax(-1), | |
loss_fn=cross_entropy_loss, | |
) | |
def create_learning_rate_fn( | |
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float | |
) -> Callable[[int], jnp.array]: | |
"""Returns a linear warmup, linear_decay learning rate function.""" | |
steps_per_epoch = train_ds_size // train_batch_size | |
num_train_steps = steps_per_epoch * num_train_epochs | |
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
decay_fn = optax.linear_schedule( | |
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
) | |
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
return schedule_fn | |
def glue_train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): | |
"""Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" | |
steps_per_epoch = len(dataset) // batch_size | |
perms = jax.random.permutation(rng, len(dataset)) | |
perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch. | |
perms = perms.reshape((steps_per_epoch, batch_size)) | |
for perm in perms: | |
batch = dataset[perm] | |
batch = {k: np.array(v) for k, v in batch.items()} | |
batch = shard(batch) | |
yield batch | |
def glue_eval_data_collator(dataset: Dataset, batch_size: int): | |
"""Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop.""" | |
batch_idx = np.arange(len(dataset)) | |
steps_per_epoch = math.ceil(len(dataset) / batch_size) | |
batch_idx = np.array_split(batch_idx, steps_per_epoch) | |
for idx in batch_idx: | |
batch = dataset[idx] | |
batch = {k: np.array(v) for k, v in batch.items()} | |
yield batch | |
def main(): | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_glue", model_args, data_args, framework="flax") | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
if jax.process_index() == 0: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
# Handle the repository creation | |
if training_args.push_to_hub: | |
if training_args.hub_model_id is None: | |
repo_name = get_full_repo_name( | |
Path(training_args.output_dir).absolute().name, token=training_args.hub_token | |
) | |
else: | |
repo_name = training_args.hub_model_id | |
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) | |
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) | |
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) | |
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). | |
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the | |
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named | |
# label if at least two columns are provided. | |
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this | |
# single column. You can easily tweak this behavior (see below) | |
# In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
# download the dataset. | |
if data_args.task_name is not None: | |
# Downloading and loading a dataset from the hub. | |
raw_datasets = load_dataset( | |
"glue", | |
data_args.task_name, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
# Loading the dataset from local csv or json file. | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1] | |
raw_datasets = load_dataset( | |
extension, | |
data_files=data_files, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# See more about loading any type of standard or custom dataset at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Labels | |
if data_args.task_name is not None: | |
is_regression = data_args.task_name == "stsb" | |
if not is_regression: | |
label_list = raw_datasets["train"].features["label"].names | |
num_labels = len(label_list) | |
else: | |
num_labels = 1 | |
else: | |
# Trying to have good defaults here, don't hesitate to tweak to your needs. | |
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] | |
if is_regression: | |
num_labels = 1 | |
else: | |
# A useful fast method: | |
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique | |
label_list = raw_datasets["train"].unique("label") | |
label_list.sort() # Let's sort it for determinism | |
num_labels = len(label_list) | |
# Load pretrained model and tokenizer | |
config = AutoConfig.from_pretrained( | |
model_args.model_name_or_path, | |
num_labels=num_labels, | |
finetuning_task=data_args.task_name, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
use_fast=not model_args.use_slow_tokenizer, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
model = FlaxAutoModelForSequenceClassification.from_pretrained( | |
model_args.model_name_or_path, | |
config=config, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# Preprocessing the datasets | |
if data_args.task_name is not None: | |
sentence1_key, sentence2_key = task_to_keys[data_args.task_name] | |
else: | |
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case. | |
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] | |
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: | |
sentence1_key, sentence2_key = "sentence1", "sentence2" | |
else: | |
if len(non_label_column_names) >= 2: | |
sentence1_key, sentence2_key = non_label_column_names[:2] | |
else: | |
sentence1_key, sentence2_key = non_label_column_names[0], None | |
# Some models have set the order of the labels to use, so let's make sure we do use it. | |
label_to_id = None | |
if ( | |
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id | |
and data_args.task_name is not None | |
and not is_regression | |
): | |
# Some have all caps in their config, some don't. | |
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} | |
if sorted(label_name_to_id.keys()) == sorted(label_list): | |
logger.info( | |
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. " | |
"Using it!" | |
) | |
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)} | |
else: | |
logger.warning( | |
"Your model seems to have been trained with labels, but they don't match the dataset: ", | |
f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." | |
"\nIgnoring the model labels as a result.", | |
) | |
elif data_args.task_name is None: | |
label_to_id = {v: i for i, v in enumerate(label_list)} | |
def preprocess_function(examples): | |
# Tokenize the texts | |
texts = ( | |
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) | |
) | |
result = tokenizer(*texts, padding="max_length", max_length=data_args.max_seq_length, truncation=True) | |
if "label" in examples: | |
if label_to_id is not None: | |
# Map labels to IDs (not necessary for GLUE tasks) | |
result["labels"] = [label_to_id[l] for l in examples["label"]] | |
else: | |
# In all cases, rename the column to labels because the model will expect that. | |
result["labels"] = examples["label"] | |
return result | |
processed_datasets = raw_datasets.map( | |
preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names | |
) | |
train_dataset = processed_datasets["train"] | |
eval_dataset = processed_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] | |
# Log a few random samples from the training set: | |
for index in random.sample(range(len(train_dataset)), 3): | |
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") | |
# Define a summary writer | |
has_tensorboard = is_tensorboard_available() | |
if has_tensorboard and jax.process_index() == 0: | |
try: | |
from flax.metrics.tensorboard import SummaryWriter | |
summary_writer = SummaryWriter(training_args.output_dir) | |
summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)}) | |
except ImportError as ie: | |
has_tensorboard = False | |
logger.warning( | |
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
) | |
else: | |
logger.warning( | |
"Unable to display metrics through TensorBoard because the package is not installed: " | |
"Please run pip install tensorboard to enable." | |
) | |
def write_train_metric(summary_writer, train_metrics, train_time, step): | |
summary_writer.scalar("train_time", train_time, step) | |
train_metrics = get_metrics(train_metrics) | |
for key, vals in train_metrics.items(): | |
tag = f"train_{key}" | |
for i, val in enumerate(vals): | |
summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
def write_eval_metric(summary_writer, eval_metrics, step): | |
for metric_name, value in eval_metrics.items(): | |
summary_writer.scalar(f"eval_{metric_name}", value, step) | |
num_epochs = int(training_args.num_train_epochs) | |
rng = jax.random.PRNGKey(training_args.seed) | |
dropout_rngs = jax.random.split(rng, jax.local_device_count()) | |
train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count() | |
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) | |
eval_batch_size = per_device_eval_batch_size * jax.device_count() | |
learning_rate_fn = create_learning_rate_fn( | |
len(train_dataset), | |
train_batch_size, | |
training_args.num_train_epochs, | |
training_args.warmup_steps, | |
training_args.learning_rate, | |
) | |
state = create_train_state( | |
model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=training_args.weight_decay | |
) | |
# define step functions | |
def train_step( | |
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey | |
) -> Tuple[train_state.TrainState, float]: | |
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" | |
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) | |
targets = batch.pop("labels") | |
def loss_fn(params): | |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
loss = state.loss_fn(logits, targets) | |
return loss | |
grad_fn = jax.value_and_grad(loss_fn) | |
loss, grad = grad_fn(state.params) | |
grad = jax.lax.pmean(grad, "batch") | |
new_state = state.apply_gradients(grads=grad) | |
metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") | |
return new_state, metrics, new_dropout_rng | |
p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) | |
def eval_step(state, batch): | |
logits = state.apply_fn(**batch, params=state.params, train=False)[0] | |
return state.logits_fn(logits) | |
p_eval_step = jax.pmap(eval_step, axis_name="batch") | |
if data_args.task_name is not None: | |
metric = evaluate.load("glue", data_args.task_name) | |
else: | |
metric = evaluate.load("accuracy") | |
logger.info(f"===== Starting training ({num_epochs} epochs) =====") | |
train_time = 0 | |
# make sure weights are replicated on each device | |
state = replicate(state) | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
total_steps = steps_per_epoch * num_epochs | |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (0/{num_epochs})", position=0) | |
for epoch in epochs: | |
train_start = time.time() | |
train_metrics = [] | |
# Create sampling rng | |
rng, input_rng = jax.random.split(rng) | |
# train | |
train_loader = glue_train_data_collator(input_rng, train_dataset, train_batch_size) | |
for step, batch in enumerate( | |
tqdm( | |
train_loader, | |
total=steps_per_epoch, | |
desc="Training...", | |
position=1, | |
), | |
): | |
state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs) | |
train_metrics.append(train_metric) | |
cur_step = (epoch * steps_per_epoch) + (step + 1) | |
if cur_step % training_args.logging_steps == 0 and cur_step > 0: | |
# Save metrics | |
train_metric = unreplicate(train_metric) | |
train_time += time.time() - train_start | |
if has_tensorboard and jax.process_index() == 0: | |
write_train_metric(summary_writer, train_metrics, train_time, cur_step) | |
epochs.write( | |
f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:" | |
f" {train_metric['learning_rate']})" | |
) | |
train_metrics = [] | |
if (cur_step % training_args.eval_steps == 0 or cur_step % steps_per_epoch == 0) and cur_step > 0: | |
# evaluate | |
eval_loader = glue_eval_data_collator(eval_dataset, eval_batch_size) | |
for batch in tqdm( | |
eval_loader, | |
total=math.ceil(len(eval_dataset) / eval_batch_size), | |
desc="Evaluating ...", | |
position=2, | |
): | |
labels = batch.pop("labels") | |
predictions = pad_shard_unpad(p_eval_step)( | |
state, batch, min_device_batch=per_device_eval_batch_size | |
) | |
metric.add_batch(predictions=np.array(predictions), references=labels) | |
eval_metric = metric.compute() | |
logger.info(f"Step... ({cur_step}/{total_steps} | Eval metrics: {eval_metric})") | |
if has_tensorboard and jax.process_index() == 0: | |
write_eval_metric(summary_writer, eval_metric, cur_step) | |
if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps): | |
# save checkpoint after each epoch and push checkpoint to the hub | |
if jax.process_index() == 0: | |
params = jax.device_get(unreplicate(state.params)) | |
model.save_pretrained(training_args.output_dir, params=params) | |
tokenizer.save_pretrained(training_args.output_dir) | |
if training_args.push_to_hub: | |
repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) | |
epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}" | |
# save the eval metrics in json | |
if jax.process_index() == 0: | |
eval_metric = {f"eval_{metric_name}": value for metric_name, value in eval_metric.items()} | |
path = os.path.join(training_args.output_dir, "eval_results.json") | |
with open(path, "w") as f: | |
json.dump(eval_metric, f, indent=4, sort_keys=True) | |
if __name__ == "__main__": | |
main() | |