Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
# Copyright (c) Megvii, Inc. and its affiliates. | |
import argparse | |
import os | |
import time | |
from loguru import logger | |
import cv2 | |
import torch | |
from yolox.data.data_augment import ValTransform | |
from yolox.data.datasets import COCO_CLASSES | |
from yolox.exp import get_exp | |
from yolox.utils import fuse_model, get_model_info, postprocess, vis | |
IMAGE_EXT = [".jpg", ".jpeg", ".webp", ".bmp", ".png"] | |
def make_parser(): | |
parser = argparse.ArgumentParser("YOLOX Demo!") | |
parser.add_argument( | |
"demo", default="image", help="demo type, eg. image, video and webcam" | |
) | |
parser.add_argument("-expn", "--experiment-name", type=str, default=None) | |
parser.add_argument("-n", "--name", type=str, default=None, help="model name") | |
parser.add_argument( | |
"--path", default="./assets/dog.jpg", help="path to images or video" | |
) | |
parser.add_argument("--camid", type=int, default=0, help="webcam demo camera id") | |
parser.add_argument( | |
"--save_result", | |
action="store_true", | |
help="whether to save the inference result of image/video", | |
) | |
# exp file | |
parser.add_argument( | |
"-f", | |
"--exp_file", | |
default=None, | |
type=str, | |
help="please input your experiment description file", | |
) | |
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval") | |
parser.add_argument( | |
"--device", | |
default="cpu", | |
type=str, | |
help="device to run our model, can either be cpu or gpu", | |
) | |
parser.add_argument("--conf", default=0.3, type=float, help="test conf") | |
parser.add_argument("--nms", default=0.3, type=float, help="test nms threshold") | |
parser.add_argument("--tsize", default=None, type=int, help="test img size") | |
parser.add_argument( | |
"--fp16", | |
dest="fp16", | |
default=False, | |
action="store_true", | |
help="Adopting mix precision evaluating.", | |
) | |
parser.add_argument( | |
"--legacy", | |
dest="legacy", | |
default=False, | |
action="store_true", | |
help="To be compatible with older versions", | |
) | |
parser.add_argument( | |
"--fuse", | |
dest="fuse", | |
default=False, | |
action="store_true", | |
help="Fuse conv and bn for testing.", | |
) | |
parser.add_argument( | |
"--trt", | |
dest="trt", | |
default=False, | |
action="store_true", | |
help="Using TensorRT model for testing.", | |
) | |
return parser | |
def get_image_list(path): | |
image_names = [] | |
for maindir, subdir, file_name_list in os.walk(path): | |
for filename in file_name_list: | |
apath = os.path.join(maindir, filename) | |
ext = os.path.splitext(apath)[1] | |
if ext in IMAGE_EXT: | |
image_names.append(apath) | |
return image_names | |
class Predictor(object): | |
def __init__( | |
self, | |
model, | |
exp, | |
cls_names=COCO_CLASSES, | |
trt_file=None, | |
decoder=None, | |
device="cpu", | |
fp16=False, | |
legacy=False, | |
): | |
self.model = model | |
self.cls_names = cls_names | |
self.decoder = decoder | |
self.num_classes = exp.num_classes | |
self.confthre = exp.test_conf | |
self.nmsthre = exp.nmsthre | |
self.test_size = exp.test_size | |
self.device = device | |
self.fp16 = fp16 | |
self.preproc = ValTransform(legacy=legacy) | |
if trt_file is not None: | |
from torch2trt import TRTModule | |
model_trt = TRTModule() | |
model_trt.load_state_dict(torch.load(trt_file)) | |
x = torch.ones(1, 3, exp.test_size[0], exp.test_size[1]).cuda() | |
self.model(x) | |
self.model = model_trt | |
def inference(self, img): | |
img_info = {"id": 0} | |
if isinstance(img, str): | |
img_info["file_name"] = os.path.basename(img) | |
img = cv2.imread(img) | |
else: | |
img_info["file_name"] = None | |
height, width = img.shape[:2] | |
img_info["height"] = height | |
img_info["width"] = width | |
img_info["raw_img"] = img | |
ratio = min(self.test_size[0] / img.shape[0], self.test_size[1] / img.shape[1]) | |
img_info["ratio"] = ratio | |
img, _ = self.preproc(img, None, self.test_size) | |
img = torch.from_numpy(img).unsqueeze(0) | |
img = img.float() | |
if self.device == "gpu": | |
img = img.cuda() | |
if self.fp16: | |
img = img.half() # to FP16 | |
with torch.no_grad(): | |
t0 = time.time() | |
outputs = self.model(img) | |
if self.decoder is not None: | |
outputs = self.decoder(outputs, dtype=outputs.type()) | |
outputs = postprocess( | |
outputs, self.num_classes, self.confthre, | |
self.nmsthre, class_agnostic=True | |
) | |
logger.info("Infer time: {:.4f}s".format(time.time() - t0)) | |
return outputs, img_info | |
def visual(self, output, img_info, cls_conf=0.35): | |
ratio = img_info["ratio"] | |
img = img_info["raw_img"] | |
if output is None: | |
return img | |
output = output.cpu() | |
bboxes = output[:, 0:4] | |
# preprocessing: resize | |
bboxes /= ratio | |
cls = output[:, 6] | |
scores = output[:, 4] * output[:, 5] | |
vis_res = vis(img, bboxes, scores, cls, cls_conf, self.cls_names) | |
return vis_res | |
def image_demo(predictor, vis_folder, path, current_time, save_result): | |
if os.path.isdir(path): | |
files = get_image_list(path) | |
else: | |
files = [path] | |
files.sort() | |
for image_name in files: | |
outputs, img_info = predictor.inference(image_name) | |
result_image = predictor.visual(outputs[0], img_info, predictor.confthre) | |
if save_result: | |
save_folder = os.path.join( | |
vis_folder, time.strftime("%Y_%m_%d_%H_%M_%S", current_time) | |
) | |
os.makedirs(save_folder, exist_ok=True) | |
save_file_name = os.path.join(save_folder, os.path.basename(image_name)) | |
logger.info("Saving detection result in {}".format(save_file_name)) | |
cv2.imwrite(save_file_name, result_image) | |
ch = cv2.waitKey(0) | |
if ch == 27 or ch == ord("q") or ch == ord("Q"): | |
break | |
def imageflow_demo(predictor, vis_folder, current_time, args): | |
cap = cv2.VideoCapture(args.path if args.demo == "video" else args.camid) | |
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # float | |
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
if args.save_result: | |
save_folder = os.path.join( | |
vis_folder, time.strftime("%Y_%m_%d_%H_%M_%S", current_time) | |
) | |
os.makedirs(save_folder, exist_ok=True) | |
if args.demo == "video": | |
save_path = os.path.join(save_folder, os.path.basename(args.path)) | |
else: | |
save_path = os.path.join(save_folder, "camera.mp4") | |
logger.info(f"video save_path is {save_path}") | |
vid_writer = cv2.VideoWriter( | |
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height)) | |
) | |
while True: | |
ret_val, frame = cap.read() | |
if ret_val: | |
outputs, img_info = predictor.inference(frame) | |
result_frame = predictor.visual(outputs[0], img_info, predictor.confthre) | |
if args.save_result: | |
vid_writer.write(result_frame) | |
else: | |
cv2.namedWindow("yolox", cv2.WINDOW_NORMAL) | |
cv2.imshow("yolox", result_frame) | |
ch = cv2.waitKey(1) | |
if ch == 27 or ch == ord("q") or ch == ord("Q"): | |
break | |
else: | |
break | |
def main(exp, args): | |
if not args.experiment_name: | |
args.experiment_name = exp.exp_name | |
file_name = os.path.join(exp.output_dir, args.experiment_name) | |
os.makedirs(file_name, exist_ok=True) | |
vis_folder = None | |
if args.save_result: | |
vis_folder = os.path.join(file_name, "vis_res") | |
os.makedirs(vis_folder, exist_ok=True) | |
if args.trt: | |
args.device = "gpu" | |
logger.info("Args: {}".format(args)) | |
if args.conf is not None: | |
exp.test_conf = args.conf | |
if args.nms is not None: | |
exp.nmsthre = args.nms | |
if args.tsize is not None: | |
exp.test_size = (args.tsize, args.tsize) | |
model = exp.get_model() | |
logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size))) | |
if args.device == "gpu": | |
model.cuda() | |
if args.fp16: | |
model.half() # to FP16 | |
model.eval() | |
if not args.trt: | |
if args.ckpt is None: | |
ckpt_file = os.path.join(file_name, "best_ckpt.pth") | |
else: | |
ckpt_file = args.ckpt | |
logger.info("loading checkpoint") | |
ckpt = torch.load(ckpt_file, map_location="cpu") | |
# load the model state dict | |
model.load_state_dict(ckpt["model"]) | |
logger.info("loaded checkpoint done.") | |
if args.fuse: | |
logger.info("\tFusing model...") | |
model = fuse_model(model) | |
if args.trt: | |
assert not args.fuse, "TensorRT model is not support model fusing!" | |
trt_file = os.path.join(file_name, "model_trt.pth") | |
assert os.path.exists( | |
trt_file | |
), "TensorRT model is not found!\n Run python3 tools/trt.py first!" | |
model.head.decode_in_inference = False | |
decoder = model.head.decode_outputs | |
logger.info("Using TensorRT to inference") | |
else: | |
trt_file = None | |
decoder = None | |
predictor = Predictor( | |
model, exp, COCO_CLASSES, trt_file, decoder, | |
args.device, args.fp16, args.legacy, | |
) | |
current_time = time.localtime() | |
if args.demo == "image": | |
image_demo(predictor, vis_folder, args.path, current_time, args.save_result) | |
elif args.demo == "video" or args.demo == "webcam": | |
imageflow_demo(predictor, vis_folder, current_time, args) | |
if __name__ == "__main__": | |
args = make_parser().parse_args() | |
exp = get_exp(args.exp_file, args.name) | |
main(exp, args) | |