Spaces:
Runtime error
Runtime error
// Copyright (C) 2018-2021 Intel Corporation | |
// SPDX-License-Identifier: Apache-2.0 | |
// | |
using namespace InferenceEngine; | |
/** | |
* @brief Define names based depends on Unicode path support | |
*/ | |
static const int INPUT_W = 416; | |
static const int INPUT_H = 416; | |
static const int NUM_CLASSES = 80; // COCO has 80 classes. Modify this value on your own dataset. | |
cv::Mat static_resize(cv::Mat& img) { | |
float r = std::min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); | |
// r = std::min(r, 1.0f); | |
int unpad_w = r * img.cols; | |
int unpad_h = r * img.rows; | |
cv::Mat re(unpad_h, unpad_w, CV_8UC3); | |
cv::resize(img, re, re.size()); | |
//cv::Mat out(INPUT_W, INPUT_H, CV_8UC3, cv::Scalar(114, 114, 114)); | |
cv::Mat out(INPUT_H, INPUT_W, CV_8UC3, cv::Scalar(114, 114, 114)); | |
re.copyTo(out(cv::Rect(0, 0, re.cols, re.rows))); | |
return out; | |
} | |
void blobFromImage(cv::Mat& img, Blob::Ptr& blob){ | |
int channels = 3; | |
int img_h = img.rows; | |
int img_w = img.cols; | |
InferenceEngine::MemoryBlob::Ptr mblob = InferenceEngine::as<InferenceEngine::MemoryBlob>(blob); | |
if (!mblob) | |
{ | |
THROW_IE_EXCEPTION << "We expect blob to be inherited from MemoryBlob in matU8ToBlob, " | |
<< "but by fact we were not able to cast inputBlob to MemoryBlob"; | |
} | |
// locked memory holder should be alive all time while access to its buffer happens | |
auto mblobHolder = mblob->wmap(); | |
float *blob_data = mblobHolder.as<float *>(); | |
for (size_t c = 0; c < channels; c++) | |
{ | |
for (size_t h = 0; h < img_h; h++) | |
{ | |
for (size_t w = 0; w < img_w; w++) | |
{ | |
blob_data[c * img_w * img_h + h * img_w + w] = | |
(float)img.at<cv::Vec3b>(h, w)[c]; | |
} | |
} | |
} | |
} | |
struct Object | |
{ | |
cv::Rect_<float> rect; | |
int label; | |
float prob; | |
}; | |
struct GridAndStride | |
{ | |
int grid0; | |
int grid1; | |
int stride; | |
}; | |
static void generate_grids_and_stride(const int target_w, const int target_h, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides) | |
{ | |
for (auto stride : strides) | |
{ | |
int num_grid_w = target_w / stride; | |
int num_grid_h = target_h / stride; | |
for (int g1 = 0; g1 < num_grid_h; g1++) | |
{ | |
for (int g0 = 0; g0 < num_grid_w; g0++) | |
{ | |
grid_strides.push_back((GridAndStride){g0, g1, stride}); | |
} | |
} | |
} | |
} | |
static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, const float* feat_ptr, float prob_threshold, std::vector<Object>& objects) | |
{ | |
const int num_anchors = grid_strides.size(); | |
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) | |
{ | |
const int grid0 = grid_strides[anchor_idx].grid0; | |
const int grid1 = grid_strides[anchor_idx].grid1; | |
const int stride = grid_strides[anchor_idx].stride; | |
const int basic_pos = anchor_idx * (NUM_CLASSES + 5); | |
// yolox/models/yolo_head.py decode logic | |
// outputs[..., :2] = (outputs[..., :2] + grids) * strides | |
// outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides | |
float x_center = (feat_ptr[basic_pos + 0] + grid0) * stride; | |
float y_center = (feat_ptr[basic_pos + 1] + grid1) * stride; | |
float w = exp(feat_ptr[basic_pos + 2]) * stride; | |
float h = exp(feat_ptr[basic_pos + 3]) * stride; | |
float x0 = x_center - w * 0.5f; | |
float y0 = y_center - h * 0.5f; | |
float box_objectness = feat_ptr[basic_pos + 4]; | |
for (int class_idx = 0; class_idx < NUM_CLASSES; class_idx++) | |
{ | |
float box_cls_score = feat_ptr[basic_pos + 5 + class_idx]; | |
float box_prob = box_objectness * box_cls_score; | |
if (box_prob > prob_threshold) | |
{ | |
Object obj; | |
obj.rect.x = x0; | |
obj.rect.y = y0; | |
obj.rect.width = w; | |
obj.rect.height = h; | |
obj.label = class_idx; | |
obj.prob = box_prob; | |
objects.push_back(obj); | |
} | |
} // class loop | |
} // point anchor loop | |
} | |
static inline float intersection_area(const Object& a, const Object& b) | |
{ | |
cv::Rect_<float> inter = a.rect & b.rect; | |
return inter.area(); | |
} | |
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) | |
{ | |
int i = left; | |
int j = right; | |
float p = faceobjects[(left + right) / 2].prob; | |
while (i <= j) | |
{ | |
while (faceobjects[i].prob > p) | |
i++; | |
while (faceobjects[j].prob < p) | |
j--; | |
if (i <= j) | |
{ | |
// swap | |
std::swap(faceobjects[i], faceobjects[j]); | |
i++; | |
j--; | |
} | |
} | |
{ | |
{ | |
if (left < j) qsort_descent_inplace(faceobjects, left, j); | |
} | |
{ | |
if (i < right) qsort_descent_inplace(faceobjects, i, right); | |
} | |
} | |
} | |
static void qsort_descent_inplace(std::vector<Object>& objects) | |
{ | |
if (objects.empty()) | |
return; | |
qsort_descent_inplace(objects, 0, objects.size() - 1); | |
} | |
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold) | |
{ | |
picked.clear(); | |
const int n = faceobjects.size(); | |
std::vector<float> areas(n); | |
for (int i = 0; i < n; i++) | |
{ | |
areas[i] = faceobjects[i].rect.area(); | |
} | |
for (int i = 0; i < n; i++) | |
{ | |
const Object& a = faceobjects[i]; | |
int keep = 1; | |
for (int j = 0; j < (int)picked.size(); j++) | |
{ | |
const Object& b = faceobjects[picked[j]]; | |
// intersection over union | |
float inter_area = intersection_area(a, b); | |
float union_area = areas[i] + areas[picked[j]] - inter_area; | |
// float IoU = inter_area / union_area | |
if (inter_area / union_area > nms_threshold) | |
keep = 0; | |
} | |
if (keep) | |
picked.push_back(i); | |
} | |
} | |
static void decode_outputs(const float* prob, std::vector<Object>& objects, float scale, const int img_w, const int img_h) { | |
std::vector<Object> proposals; | |
std::vector<int> strides = {8, 16, 32}; | |
std::vector<GridAndStride> grid_strides; | |
generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides); | |
generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals); | |
qsort_descent_inplace(proposals); | |
std::vector<int> picked; | |
nms_sorted_bboxes(proposals, picked, NMS_THRESH); | |
int count = picked.size(); | |
objects.resize(count); | |
for (int i = 0; i < count; i++) | |
{ | |
objects[i] = proposals[picked[i]]; | |
// adjust offset to original unpadded | |
float x0 = (objects[i].rect.x) / scale; | |
float y0 = (objects[i].rect.y) / scale; | |
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; | |
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; | |
// clip | |
x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); | |
y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); | |
x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); | |
y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); | |
objects[i].rect.x = x0; | |
objects[i].rect.y = y0; | |
objects[i].rect.width = x1 - x0; | |
objects[i].rect.height = y1 - y0; | |
} | |
} | |
const float color_list[80][3] = | |
{ | |
{0.000, 0.447, 0.741}, | |
{0.850, 0.325, 0.098}, | |
{0.929, 0.694, 0.125}, | |
{0.494, 0.184, 0.556}, | |
{0.466, 0.674, 0.188}, | |
{0.301, 0.745, 0.933}, | |
{0.635, 0.078, 0.184}, | |
{0.300, 0.300, 0.300}, | |
{0.600, 0.600, 0.600}, | |
{1.000, 0.000, 0.000}, | |
{1.000, 0.500, 0.000}, | |
{0.749, 0.749, 0.000}, | |
{0.000, 1.000, 0.000}, | |
{0.000, 0.000, 1.000}, | |
{0.667, 0.000, 1.000}, | |
{0.333, 0.333, 0.000}, | |
{0.333, 0.667, 0.000}, | |
{0.333, 1.000, 0.000}, | |
{0.667, 0.333, 0.000}, | |
{0.667, 0.667, 0.000}, | |
{0.667, 1.000, 0.000}, | |
{1.000, 0.333, 0.000}, | |
{1.000, 0.667, 0.000}, | |
{1.000, 1.000, 0.000}, | |
{0.000, 0.333, 0.500}, | |
{0.000, 0.667, 0.500}, | |
{0.000, 1.000, 0.500}, | |
{0.333, 0.000, 0.500}, | |
{0.333, 0.333, 0.500}, | |
{0.333, 0.667, 0.500}, | |
{0.333, 1.000, 0.500}, | |
{0.667, 0.000, 0.500}, | |
{0.667, 0.333, 0.500}, | |
{0.667, 0.667, 0.500}, | |
{0.667, 1.000, 0.500}, | |
{1.000, 0.000, 0.500}, | |
{1.000, 0.333, 0.500}, | |
{1.000, 0.667, 0.500}, | |
{1.000, 1.000, 0.500}, | |
{0.000, 0.333, 1.000}, | |
{0.000, 0.667, 1.000}, | |
{0.000, 1.000, 1.000}, | |
{0.333, 0.000, 1.000}, | |
{0.333, 0.333, 1.000}, | |
{0.333, 0.667, 1.000}, | |
{0.333, 1.000, 1.000}, | |
{0.667, 0.000, 1.000}, | |
{0.667, 0.333, 1.000}, | |
{0.667, 0.667, 1.000}, | |
{0.667, 1.000, 1.000}, | |
{1.000, 0.000, 1.000}, | |
{1.000, 0.333, 1.000}, | |
{1.000, 0.667, 1.000}, | |
{0.333, 0.000, 0.000}, | |
{0.500, 0.000, 0.000}, | |
{0.667, 0.000, 0.000}, | |
{0.833, 0.000, 0.000}, | |
{1.000, 0.000, 0.000}, | |
{0.000, 0.167, 0.000}, | |
{0.000, 0.333, 0.000}, | |
{0.000, 0.500, 0.000}, | |
{0.000, 0.667, 0.000}, | |
{0.000, 0.833, 0.000}, | |
{0.000, 1.000, 0.000}, | |
{0.000, 0.000, 0.167}, | |
{0.000, 0.000, 0.333}, | |
{0.000, 0.000, 0.500}, | |
{0.000, 0.000, 0.667}, | |
{0.000, 0.000, 0.833}, | |
{0.000, 0.000, 1.000}, | |
{0.000, 0.000, 0.000}, | |
{0.143, 0.143, 0.143}, | |
{0.286, 0.286, 0.286}, | |
{0.429, 0.429, 0.429}, | |
{0.571, 0.571, 0.571}, | |
{0.714, 0.714, 0.714}, | |
{0.857, 0.857, 0.857}, | |
{0.000, 0.447, 0.741}, | |
{0.314, 0.717, 0.741}, | |
{0.50, 0.5, 0} | |
}; | |
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects) | |
{ | |
static const char* class_names[] = { | |
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", | |
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", | |
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", | |
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", | |
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", | |
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", | |
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", | |
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", | |
"hair drier", "toothbrush" | |
}; | |
cv::Mat image = bgr.clone(); | |
for (size_t i = 0; i < objects.size(); i++) | |
{ | |
const Object& obj = objects[i]; | |
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, | |
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); | |
cv::Scalar color = cv::Scalar(color_list[obj.label][0], color_list[obj.label][1], color_list[obj.label][2]); | |
float c_mean = cv::mean(color)[0]; | |
cv::Scalar txt_color; | |
if (c_mean > 0.5){ | |
txt_color = cv::Scalar(0, 0, 0); | |
}else{ | |
txt_color = cv::Scalar(255, 255, 255); | |
} | |
cv::rectangle(image, obj.rect, color * 255, 2); | |
char text[256]; | |
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); | |
int baseLine = 0; | |
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); | |
cv::Scalar txt_bk_color = color * 0.7 * 255; | |
int x = obj.rect.x; | |
int y = obj.rect.y + 1; | |
//int y = obj.rect.y - label_size.height - baseLine; | |
if (y > image.rows) | |
y = image.rows; | |
//if (x + label_size.width > image.cols) | |
//x = image.cols - label_size.width; | |
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), | |
txt_bk_color, -1); | |
cv::putText(image, text, cv::Point(x, y + label_size.height), | |
cv::FONT_HERSHEY_SIMPLEX, 0.4, txt_color, 1); | |
} | |
cv::imwrite("_demo.jpg" , image); | |
fprintf(stderr, "save vis file\n"); | |
/* cv::imshow("image", image); */ | |
/* cv::waitKey(0); */ | |
} | |
int main(int argc, char* argv[]) { | |
try { | |
// ------------------------------ Parsing and validation of input arguments | |
// --------------------------------- | |
if (argc != 4) { | |
tcout << "Usage : " << argv[0] << " <path_to_model> <path_to_image> <device_name>" << std::endl; | |
return EXIT_FAILURE; | |
} | |
const file_name_t input_model {argv[1]}; | |
const file_name_t input_image_path {argv[2]}; | |
const std::string device_name {argv[3]}; | |
// ----------------------------------------------------------------------------------------------------- | |
// --------------------------- Step 1. Initialize inference engine core | |
// ------------------------------------- | |
Core ie; | |
// ----------------------------------------------------------------------------------------------------- | |
// Step 2. Read a model in OpenVINO Intermediate Representation (.xml and | |
// .bin files) or ONNX (.onnx file) format | |
CNNNetwork network = ie.ReadNetwork(input_model); | |
if (network.getOutputsInfo().size() != 1) | |
throw std::logic_error("Sample supports topologies with 1 output only"); | |
if (network.getInputsInfo().size() != 1) | |
throw std::logic_error("Sample supports topologies with 1 input only"); | |
// ----------------------------------------------------------------------------------------------------- | |
// --------------------------- Step 3. Configure input & output | |
// --------------------------------------------- | |
// --------------------------- Prepare input blobs | |
// ----------------------------------------------------- | |
InputInfo::Ptr input_info = network.getInputsInfo().begin()->second; | |
std::string input_name = network.getInputsInfo().begin()->first; | |
/* Mark input as resizable by setting of a resize algorithm. | |
* In this case we will be able to set an input blob of any shape to an | |
* infer request. Resize and layout conversions are executed automatically | |
* during inference */ | |
//input_info->getPreProcess().setResizeAlgorithm(RESIZE_BILINEAR); | |
//input_info->setLayout(Layout::NHWC); | |
//input_info->setPrecision(Precision::FP32); | |
// --------------------------- Prepare output blobs | |
// ---------------------------------------------------- | |
if (network.getOutputsInfo().empty()) { | |
std::cerr << "Network outputs info is empty" << std::endl; | |
return EXIT_FAILURE; | |
} | |
DataPtr output_info = network.getOutputsInfo().begin()->second; | |
std::string output_name = network.getOutputsInfo().begin()->first; | |
output_info->setPrecision(Precision::FP32); | |
// ----------------------------------------------------------------------------------------------------- | |
// --------------------------- Step 4. Loading a model to the device | |
// ------------------------------------------ | |
ExecutableNetwork executable_network = ie.LoadNetwork(network, device_name); | |
// ----------------------------------------------------------------------------------------------------- | |
// --------------------------- Step 5. Create an infer request | |
// ------------------------------------------------- | |
InferRequest infer_request = executable_network.CreateInferRequest(); | |
// ----------------------------------------------------------------------------------------------------- | |
// --------------------------- Step 6. Prepare input | |
// -------------------------------------------------------- | |
/* Read input image to a blob and set it to an infer request without resize | |
* and layout conversions. */ | |
cv::Mat image = imread_t(input_image_path); | |
cv::Mat pr_img = static_resize(image); | |
Blob::Ptr imgBlob = infer_request.GetBlob(input_name); // just wrap Mat data by Blob::Ptr | |
blobFromImage(pr_img, imgBlob); | |
// infer_request.SetBlob(input_name, imgBlob); // infer_request accepts input blob of any size | |
// ----------------------------------------------------------------------------------------------------- | |
// --------------------------- Step 7. Do inference | |
// -------------------------------------------------------- | |
/* Running the request synchronously */ | |
infer_request.Infer(); | |
// ----------------------------------------------------------------------------------------------------- | |
// --------------------------- Step 8. Process output | |
// ------------------------------------------------------ | |
const Blob::Ptr output_blob = infer_request.GetBlob(output_name); | |
MemoryBlob::CPtr moutput = as<MemoryBlob>(output_blob); | |
if (!moutput) { | |
throw std::logic_error("We expect output to be inherited from MemoryBlob, " | |
"but by fact we were not able to cast output to MemoryBlob"); | |
} | |
// locked memory holder should be alive all time while access to its buffer | |
// happens | |
auto moutputHolder = moutput->rmap(); | |
const float* net_pred = moutputHolder.as<const PrecisionTrait<Precision::FP32>::value_type*>(); | |
int img_w = image.cols; | |
int img_h = image.rows; | |
float scale = std::min(INPUT_W / (image.cols*1.0), INPUT_H / (image.rows*1.0)); | |
std::vector<Object> objects; | |
decode_outputs(net_pred, objects, scale, img_w, img_h); | |
draw_objects(image, objects); | |
// ----------------------------------------------------------------------------------------------------- | |
} catch (const std::exception& ex) { | |
std::cerr << ex.what() << std::endl; | |
return EXIT_FAILURE; | |
} | |
return EXIT_SUCCESS; | |
} | |