Spaces:
Runtime error
Runtime error
// This file is wirtten base on the following file: | |
// https://github.com/Tencent/ncnn/blob/master/examples/yolov5.cpp | |
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. | |
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | |
// in compliance with the License. You may obtain a copy of the License at | |
// | |
// https://opensource.org/licenses/BSD-3-Clause | |
// | |
// Unless required by applicable law or agreed to in writing, software distributed | |
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | |
// CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
// specific language governing permissions and limitations under the License. | |
// ------------------------------------------------------------------------------ | |
// Copyright (C) 2020-2021, Megvii Inc. All rights reserved. | |
// YOLOX use the same focus in yolov5 | |
class YoloV5Focus : public ncnn::Layer | |
{ | |
public: | |
YoloV5Focus() | |
{ | |
one_blob_only = true; | |
} | |
virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const | |
{ | |
int w = bottom_blob.w; | |
int h = bottom_blob.h; | |
int channels = bottom_blob.c; | |
int outw = w / 2; | |
int outh = h / 2; | |
int outc = channels * 4; | |
top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator); | |
if (top_blob.empty()) | |
return -100; | |
for (int p = 0; p < outc; p++) | |
{ | |
const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2); | |
float* outptr = top_blob.channel(p); | |
for (int i = 0; i < outh; i++) | |
{ | |
for (int j = 0; j < outw; j++) | |
{ | |
*outptr = *ptr; | |
outptr += 1; | |
ptr += 2; | |
} | |
ptr += w; | |
} | |
} | |
return 0; | |
} | |
}; | |
DEFINE_LAYER_CREATOR(YoloV5Focus) | |
struct Object | |
{ | |
cv::Rect_<float> rect; | |
int label; | |
float prob; | |
}; | |
struct GridAndStride | |
{ | |
int grid0; | |
int grid1; | |
int stride; | |
}; | |
static inline float intersection_area(const Object& a, const Object& b) | |
{ | |
cv::Rect_<float> inter = a.rect & b.rect; | |
return inter.area(); | |
} | |
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) | |
{ | |
int i = left; | |
int j = right; | |
float p = faceobjects[(left + right) / 2].prob; | |
while (i <= j) | |
{ | |
while (faceobjects[i].prob > p) | |
i++; | |
while (faceobjects[j].prob < p) | |
j--; | |
if (i <= j) | |
{ | |
// swap | |
std::swap(faceobjects[i], faceobjects[j]); | |
i++; | |
j--; | |
} | |
} | |
{ | |
{ | |
if (left < j) qsort_descent_inplace(faceobjects, left, j); | |
} | |
{ | |
if (i < right) qsort_descent_inplace(faceobjects, i, right); | |
} | |
} | |
} | |
static void qsort_descent_inplace(std::vector<Object>& objects) | |
{ | |
if (objects.empty()) | |
return; | |
qsort_descent_inplace(objects, 0, objects.size() - 1); | |
} | |
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold) | |
{ | |
picked.clear(); | |
const int n = faceobjects.size(); | |
std::vector<float> areas(n); | |
for (int i = 0; i < n; i++) | |
{ | |
areas[i] = faceobjects[i].rect.area(); | |
} | |
for (int i = 0; i < n; i++) | |
{ | |
const Object& a = faceobjects[i]; | |
int keep = 1; | |
for (int j = 0; j < (int)picked.size(); j++) | |
{ | |
const Object& b = faceobjects[picked[j]]; | |
// intersection over union | |
float inter_area = intersection_area(a, b); | |
float union_area = areas[i] + areas[picked[j]] - inter_area; | |
// float IoU = inter_area / union_area | |
if (inter_area / union_area > nms_threshold) | |
keep = 0; | |
} | |
if (keep) | |
picked.push_back(i); | |
} | |
} | |
static void generate_grids_and_stride(const int target_size, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides) | |
{ | |
for (int i = 0; i < (int)strides.size(); i++) | |
{ | |
int stride = strides[i]; | |
int num_grid = target_size / stride; | |
for (int g1 = 0; g1 < num_grid; g1++) | |
{ | |
for (int g0 = 0; g0 < num_grid; g0++) | |
{ | |
GridAndStride gs; | |
gs.grid0 = g0; | |
gs.grid1 = g1; | |
gs.stride = stride; | |
grid_strides.push_back(gs); | |
} | |
} | |
} | |
} | |
static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects) | |
{ | |
const int num_grid = feat_blob.h; | |
const int num_class = feat_blob.w - 5; | |
const int num_anchors = grid_strides.size(); | |
const float* feat_ptr = feat_blob.channel(0); | |
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) | |
{ | |
const int grid0 = grid_strides[anchor_idx].grid0; | |
const int grid1 = grid_strides[anchor_idx].grid1; | |
const int stride = grid_strides[anchor_idx].stride; | |
// yolox/models/yolo_head.py decode logic | |
// outputs[..., :2] = (outputs[..., :2] + grids) * strides | |
// outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides | |
float x_center = (feat_ptr[0] + grid0) * stride; | |
float y_center = (feat_ptr[1] + grid1) * stride; | |
float w = exp(feat_ptr[2]) * stride; | |
float h = exp(feat_ptr[3]) * stride; | |
float x0 = x_center - w * 0.5f; | |
float y0 = y_center - h * 0.5f; | |
float box_objectness = feat_ptr[4]; | |
for (int class_idx = 0; class_idx < num_class; class_idx++) | |
{ | |
float box_cls_score = feat_ptr[5 + class_idx]; | |
float box_prob = box_objectness * box_cls_score; | |
if (box_prob > prob_threshold) | |
{ | |
Object obj; | |
obj.rect.x = x0; | |
obj.rect.y = y0; | |
obj.rect.width = w; | |
obj.rect.height = h; | |
obj.label = class_idx; | |
obj.prob = box_prob; | |
objects.push_back(obj); | |
} | |
} // class loop | |
feat_ptr += feat_blob.w; | |
} // point anchor loop | |
} | |
static int detect_yolox(const cv::Mat& bgr, std::vector<Object>& objects) | |
{ | |
ncnn::Net yolox; | |
yolox.opt.use_vulkan_compute = true; | |
// yolox.opt.use_bf16_storage = true; | |
// Focus in yolov5 | |
yolox.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator); | |
// original pretrained model from https://github.com/Megvii-BaseDetection/YOLOX | |
// ncnn model param: https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_s_ncnn.tar.gz | |
yolox.load_param("yolox.param"); | |
yolox.load_model("yolox.bin"); | |
int img_w = bgr.cols; | |
int img_h = bgr.rows; | |
int w = img_w; | |
int h = img_h; | |
float scale = 1.f; | |
if (w > h) | |
{ | |
scale = (float)YOLOX_TARGET_SIZE / w; | |
w = YOLOX_TARGET_SIZE; | |
h = h * scale; | |
} | |
else | |
{ | |
scale = (float)YOLOX_TARGET_SIZE / h; | |
h = YOLOX_TARGET_SIZE; | |
w = w * scale; | |
} | |
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, img_w, img_h, w, h); | |
// pad to YOLOX_TARGET_SIZE rectangle | |
int wpad = YOLOX_TARGET_SIZE - w; | |
int hpad = YOLOX_TARGET_SIZE - h; | |
ncnn::Mat in_pad; | |
// different from yolov5, yolox only pad on bottom and right side, | |
// which means users don't need to extra padding info to decode boxes coordinate. | |
ncnn::copy_make_border(in, in_pad, 0, hpad, 0, wpad, ncnn::BORDER_CONSTANT, 114.f); | |
ncnn::Extractor ex = yolox.create_extractor(); | |
ex.input("images", in_pad); | |
std::vector<Object> proposals; | |
{ | |
ncnn::Mat out; | |
ex.extract("output", out); | |
static const int stride_arr[] = {8, 16, 32}; // might have stride=64 in YOLOX | |
std::vector<int> strides(stride_arr, stride_arr + sizeof(stride_arr) / sizeof(stride_arr[0])); | |
std::vector<GridAndStride> grid_strides; | |
generate_grids_and_stride(YOLOX_TARGET_SIZE, strides, grid_strides); | |
generate_yolox_proposals(grid_strides, out, YOLOX_CONF_THRESH, proposals); | |
} | |
// sort all proposals by score from highest to lowest | |
qsort_descent_inplace(proposals); | |
// apply nms with nms_threshold | |
std::vector<int> picked; | |
nms_sorted_bboxes(proposals, picked, YOLOX_NMS_THRESH); | |
int count = picked.size(); | |
objects.resize(count); | |
for (int i = 0; i < count; i++) | |
{ | |
objects[i] = proposals[picked[i]]; | |
// adjust offset to original unpadded | |
float x0 = (objects[i].rect.x) / scale; | |
float y0 = (objects[i].rect.y) / scale; | |
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; | |
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; | |
// clip | |
x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); | |
y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); | |
x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); | |
y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); | |
objects[i].rect.x = x0; | |
objects[i].rect.y = y0; | |
objects[i].rect.width = x1 - x0; | |
objects[i].rect.height = y1 - y0; | |
} | |
return 0; | |
} | |
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects) | |
{ | |
static const char* class_names[] = { | |
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", | |
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", | |
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", | |
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", | |
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", | |
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", | |
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", | |
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", | |
"hair drier", "toothbrush" | |
}; | |
cv::Mat image = bgr.clone(); | |
for (size_t i = 0; i < objects.size(); i++) | |
{ | |
const Object& obj = objects[i]; | |
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, | |
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); | |
cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0)); | |
char text[256]; | |
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); | |
int baseLine = 0; | |
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); | |
int x = obj.rect.x; | |
int y = obj.rect.y - label_size.height - baseLine; | |
if (y < 0) | |
y = 0; | |
if (x + label_size.width > image.cols) | |
x = image.cols - label_size.width; | |
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), | |
cv::Scalar(255, 255, 255), -1); | |
cv::putText(image, text, cv::Point(x, y + label_size.height), | |
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); | |
} | |
cv::imshow("image", image); | |
cv::waitKey(0); | |
} | |
int main(int argc, char** argv) | |
{ | |
if (argc != 2) | |
{ | |
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); | |
return -1; | |
} | |
const char* imagepath = argv[1]; | |
cv::Mat m = cv::imread(imagepath, 1); | |
if (m.empty()) | |
{ | |
fprintf(stderr, "cv::imread %s failed\n", imagepath); | |
return -1; | |
} | |
std::vector<Object> objects; | |
detect_yolox(m, objects); | |
draw_objects(m, objects); | |
return 0; | |
} | |