Spaces:
Runtime error
Runtime error
using namespace nvinfer1; | |
// stuff we know about the network and the input/output blobs | |
static const int INPUT_W = 640; | |
static const int INPUT_H = 640; | |
static const int NUM_CLASSES = 80; | |
const char* INPUT_BLOB_NAME = "input_0"; | |
const char* OUTPUT_BLOB_NAME = "output_0"; | |
static Logger gLogger; | |
cv::Mat static_resize(cv::Mat& img) { | |
float r = std::min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); | |
// r = std::min(r, 1.0f); | |
int unpad_w = r * img.cols; | |
int unpad_h = r * img.rows; | |
cv::Mat re(unpad_h, unpad_w, CV_8UC3); | |
cv::resize(img, re, re.size()); | |
cv::Mat out(INPUT_H, INPUT_W, CV_8UC3, cv::Scalar(114, 114, 114)); | |
re.copyTo(out(cv::Rect(0, 0, re.cols, re.rows))); | |
return out; | |
} | |
struct Object | |
{ | |
cv::Rect_<float> rect; | |
int label; | |
float prob; | |
}; | |
struct GridAndStride | |
{ | |
int grid0; | |
int grid1; | |
int stride; | |
}; | |
static void generate_grids_and_stride(std::vector<int>& strides, std::vector<GridAndStride>& grid_strides) | |
{ | |
for (auto stride : strides) | |
{ | |
int num_grid_y = INPUT_H / stride; | |
int num_grid_x = INPUT_W / stride; | |
for (int g1 = 0; g1 < num_grid_y; g1++) | |
{ | |
for (int g0 = 0; g0 < num_grid_x; g0++) | |
{ | |
grid_strides.push_back((GridAndStride){g0, g1, stride}); | |
} | |
} | |
} | |
} | |
static inline float intersection_area(const Object& a, const Object& b) | |
{ | |
cv::Rect_<float> inter = a.rect & b.rect; | |
return inter.area(); | |
} | |
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right) | |
{ | |
int i = left; | |
int j = right; | |
float p = faceobjects[(left + right) / 2].prob; | |
while (i <= j) | |
{ | |
while (faceobjects[i].prob > p) | |
i++; | |
while (faceobjects[j].prob < p) | |
j--; | |
if (i <= j) | |
{ | |
// swap | |
std::swap(faceobjects[i], faceobjects[j]); | |
i++; | |
j--; | |
} | |
} | |
{ | |
{ | |
if (left < j) qsort_descent_inplace(faceobjects, left, j); | |
} | |
{ | |
if (i < right) qsort_descent_inplace(faceobjects, i, right); | |
} | |
} | |
} | |
static void qsort_descent_inplace(std::vector<Object>& objects) | |
{ | |
if (objects.empty()) | |
return; | |
qsort_descent_inplace(objects, 0, objects.size() - 1); | |
} | |
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold) | |
{ | |
picked.clear(); | |
const int n = faceobjects.size(); | |
std::vector<float> areas(n); | |
for (int i = 0; i < n; i++) | |
{ | |
areas[i] = faceobjects[i].rect.area(); | |
} | |
for (int i = 0; i < n; i++) | |
{ | |
const Object& a = faceobjects[i]; | |
int keep = 1; | |
for (int j = 0; j < (int)picked.size(); j++) | |
{ | |
const Object& b = faceobjects[picked[j]]; | |
// intersection over union | |
float inter_area = intersection_area(a, b); | |
float union_area = areas[i] + areas[picked[j]] - inter_area; | |
// float IoU = inter_area / union_area | |
if (inter_area / union_area > nms_threshold) | |
keep = 0; | |
} | |
if (keep) | |
picked.push_back(i); | |
} | |
} | |
static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, float* feat_blob, float prob_threshold, std::vector<Object>& objects) | |
{ | |
const int num_anchors = grid_strides.size(); | |
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) | |
{ | |
const int grid0 = grid_strides[anchor_idx].grid0; | |
const int grid1 = grid_strides[anchor_idx].grid1; | |
const int stride = grid_strides[anchor_idx].stride; | |
const int basic_pos = anchor_idx * (NUM_CLASSES + 5); | |
// yolox/models/yolo_head.py decode logic | |
float x_center = (feat_blob[basic_pos+0] + grid0) * stride; | |
float y_center = (feat_blob[basic_pos+1] + grid1) * stride; | |
float w = exp(feat_blob[basic_pos+2]) * stride; | |
float h = exp(feat_blob[basic_pos+3]) * stride; | |
float x0 = x_center - w * 0.5f; | |
float y0 = y_center - h * 0.5f; | |
float box_objectness = feat_blob[basic_pos+4]; | |
for (int class_idx = 0; class_idx < NUM_CLASSES; class_idx++) | |
{ | |
float box_cls_score = feat_blob[basic_pos + 5 + class_idx]; | |
float box_prob = box_objectness * box_cls_score; | |
if (box_prob > prob_threshold) | |
{ | |
Object obj; | |
obj.rect.x = x0; | |
obj.rect.y = y0; | |
obj.rect.width = w; | |
obj.rect.height = h; | |
obj.label = class_idx; | |
obj.prob = box_prob; | |
objects.push_back(obj); | |
} | |
} // class loop | |
} // point anchor loop | |
} | |
float* blobFromImage(cv::Mat& img){ | |
float* blob = new float[img.total()*3]; | |
int channels = 3; | |
int img_h = img.rows; | |
int img_w = img.cols; | |
for (size_t c = 0; c < channels; c++) | |
{ | |
for (size_t h = 0; h < img_h; h++) | |
{ | |
for (size_t w = 0; w < img_w; w++) | |
{ | |
blob[c * img_w * img_h + h * img_w + w] = | |
(float)img.at<cv::Vec3b>(h, w)[c]; | |
} | |
} | |
} | |
return blob; | |
} | |
static void decode_outputs(float* prob, std::vector<Object>& objects, float scale, const int img_w, const int img_h) { | |
std::vector<Object> proposals; | |
std::vector<int> strides = {8, 16, 32}; | |
std::vector<GridAndStride> grid_strides; | |
generate_grids_and_stride(strides, grid_strides); | |
generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals); | |
std::cout << "num of boxes before nms: " << proposals.size() << std::endl; | |
qsort_descent_inplace(proposals); | |
std::vector<int> picked; | |
nms_sorted_bboxes(proposals, picked, NMS_THRESH); | |
int count = picked.size(); | |
std::cout << "num of boxes: " << count << std::endl; | |
objects.resize(count); | |
for (int i = 0; i < count; i++) | |
{ | |
objects[i] = proposals[picked[i]]; | |
// adjust offset to original unpadded | |
float x0 = (objects[i].rect.x) / scale; | |
float y0 = (objects[i].rect.y) / scale; | |
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; | |
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; | |
// clip | |
x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); | |
y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); | |
x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); | |
y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); | |
objects[i].rect.x = x0; | |
objects[i].rect.y = y0; | |
objects[i].rect.width = x1 - x0; | |
objects[i].rect.height = y1 - y0; | |
} | |
} | |
const float color_list[80][3] = | |
{ | |
{0.000, 0.447, 0.741}, | |
{0.850, 0.325, 0.098}, | |
{0.929, 0.694, 0.125}, | |
{0.494, 0.184, 0.556}, | |
{0.466, 0.674, 0.188}, | |
{0.301, 0.745, 0.933}, | |
{0.635, 0.078, 0.184}, | |
{0.300, 0.300, 0.300}, | |
{0.600, 0.600, 0.600}, | |
{1.000, 0.000, 0.000}, | |
{1.000, 0.500, 0.000}, | |
{0.749, 0.749, 0.000}, | |
{0.000, 1.000, 0.000}, | |
{0.000, 0.000, 1.000}, | |
{0.667, 0.000, 1.000}, | |
{0.333, 0.333, 0.000}, | |
{0.333, 0.667, 0.000}, | |
{0.333, 1.000, 0.000}, | |
{0.667, 0.333, 0.000}, | |
{0.667, 0.667, 0.000}, | |
{0.667, 1.000, 0.000}, | |
{1.000, 0.333, 0.000}, | |
{1.000, 0.667, 0.000}, | |
{1.000, 1.000, 0.000}, | |
{0.000, 0.333, 0.500}, | |
{0.000, 0.667, 0.500}, | |
{0.000, 1.000, 0.500}, | |
{0.333, 0.000, 0.500}, | |
{0.333, 0.333, 0.500}, | |
{0.333, 0.667, 0.500}, | |
{0.333, 1.000, 0.500}, | |
{0.667, 0.000, 0.500}, | |
{0.667, 0.333, 0.500}, | |
{0.667, 0.667, 0.500}, | |
{0.667, 1.000, 0.500}, | |
{1.000, 0.000, 0.500}, | |
{1.000, 0.333, 0.500}, | |
{1.000, 0.667, 0.500}, | |
{1.000, 1.000, 0.500}, | |
{0.000, 0.333, 1.000}, | |
{0.000, 0.667, 1.000}, | |
{0.000, 1.000, 1.000}, | |
{0.333, 0.000, 1.000}, | |
{0.333, 0.333, 1.000}, | |
{0.333, 0.667, 1.000}, | |
{0.333, 1.000, 1.000}, | |
{0.667, 0.000, 1.000}, | |
{0.667, 0.333, 1.000}, | |
{0.667, 0.667, 1.000}, | |
{0.667, 1.000, 1.000}, | |
{1.000, 0.000, 1.000}, | |
{1.000, 0.333, 1.000}, | |
{1.000, 0.667, 1.000}, | |
{0.333, 0.000, 0.000}, | |
{0.500, 0.000, 0.000}, | |
{0.667, 0.000, 0.000}, | |
{0.833, 0.000, 0.000}, | |
{1.000, 0.000, 0.000}, | |
{0.000, 0.167, 0.000}, | |
{0.000, 0.333, 0.000}, | |
{0.000, 0.500, 0.000}, | |
{0.000, 0.667, 0.000}, | |
{0.000, 0.833, 0.000}, | |
{0.000, 1.000, 0.000}, | |
{0.000, 0.000, 0.167}, | |
{0.000, 0.000, 0.333}, | |
{0.000, 0.000, 0.500}, | |
{0.000, 0.000, 0.667}, | |
{0.000, 0.000, 0.833}, | |
{0.000, 0.000, 1.000}, | |
{0.000, 0.000, 0.000}, | |
{0.143, 0.143, 0.143}, | |
{0.286, 0.286, 0.286}, | |
{0.429, 0.429, 0.429}, | |
{0.571, 0.571, 0.571}, | |
{0.714, 0.714, 0.714}, | |
{0.857, 0.857, 0.857}, | |
{0.000, 0.447, 0.741}, | |
{0.314, 0.717, 0.741}, | |
{0.50, 0.5, 0} | |
}; | |
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects, std::string f) | |
{ | |
static const char* class_names[] = { | |
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", | |
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", | |
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", | |
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", | |
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", | |
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", | |
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", | |
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", | |
"hair drier", "toothbrush" | |
}; | |
cv::Mat image = bgr.clone(); | |
for (size_t i = 0; i < objects.size(); i++) | |
{ | |
const Object& obj = objects[i]; | |
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, | |
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); | |
cv::Scalar color = cv::Scalar(color_list[obj.label][0], color_list[obj.label][1], color_list[obj.label][2]); | |
float c_mean = cv::mean(color)[0]; | |
cv::Scalar txt_color; | |
if (c_mean > 0.5){ | |
txt_color = cv::Scalar(0, 0, 0); | |
}else{ | |
txt_color = cv::Scalar(255, 255, 255); | |
} | |
cv::rectangle(image, obj.rect, color * 255, 2); | |
char text[256]; | |
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); | |
int baseLine = 0; | |
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); | |
cv::Scalar txt_bk_color = color * 0.7 * 255; | |
int x = obj.rect.x; | |
int y = obj.rect.y + 1; | |
//int y = obj.rect.y - label_size.height - baseLine; | |
if (y > image.rows) | |
y = image.rows; | |
//if (x + label_size.width > image.cols) | |
//x = image.cols - label_size.width; | |
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), | |
txt_bk_color, -1); | |
cv::putText(image, text, cv::Point(x, y + label_size.height), | |
cv::FONT_HERSHEY_SIMPLEX, 0.4, txt_color, 1); | |
} | |
cv::imwrite("det_res.jpg", image); | |
fprintf(stderr, "save vis file\n"); | |
/* cv::imshow("image", image); */ | |
/* cv::waitKey(0); */ | |
} | |
void doInference(IExecutionContext& context, float* input, float* output, const int output_size, cv::Size input_shape) { | |
const ICudaEngine& engine = context.getEngine(); | |
// Pointers to input and output device buffers to pass to engine. | |
// Engine requires exactly IEngine::getNbBindings() number of buffers. | |
assert(engine.getNbBindings() == 2); | |
void* buffers[2]; | |
// In order to bind the buffers, we need to know the names of the input and output tensors. | |
// Note that indices are guaranteed to be less than IEngine::getNbBindings() | |
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME); | |
assert(engine.getBindingDataType(inputIndex) == nvinfer1::DataType::kFLOAT); | |
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME); | |
assert(engine.getBindingDataType(outputIndex) == nvinfer1::DataType::kFLOAT); | |
int mBatchSize = engine.getMaxBatchSize(); | |
// Create GPU buffers on device | |
CHECK(cudaMalloc(&buffers[inputIndex], 3 * input_shape.height * input_shape.width * sizeof(float))); | |
CHECK(cudaMalloc(&buffers[outputIndex], output_size*sizeof(float))); | |
// Create stream | |
cudaStream_t stream; | |
CHECK(cudaStreamCreate(&stream)); | |
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host | |
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, 3 * input_shape.height * input_shape.width * sizeof(float), cudaMemcpyHostToDevice, stream)); | |
context.enqueue(1, buffers, stream, nullptr); | |
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], output_size * sizeof(float), cudaMemcpyDeviceToHost, stream)); | |
cudaStreamSynchronize(stream); | |
// Release stream and buffers | |
cudaStreamDestroy(stream); | |
CHECK(cudaFree(buffers[inputIndex])); | |
CHECK(cudaFree(buffers[outputIndex])); | |
} | |
int main(int argc, char** argv) { | |
cudaSetDevice(DEVICE); | |
// create a model using the API directly and serialize it to a stream | |
char *trtModelStream{nullptr}; | |
size_t size{0}; | |
if (argc == 4 && std::string(argv[2]) == "-i") { | |
const std::string engine_file_path {argv[1]}; | |
std::ifstream file(engine_file_path, std::ios::binary); | |
if (file.good()) { | |
file.seekg(0, file.end); | |
size = file.tellg(); | |
file.seekg(0, file.beg); | |
trtModelStream = new char[size]; | |
assert(trtModelStream); | |
file.read(trtModelStream, size); | |
file.close(); | |
} | |
} else { | |
std::cerr << "arguments not right!" << std::endl; | |
std::cerr << "run 'python3 yolox/deploy/trt.py -n yolox-{tiny, s, m, l, x}' to serialize model first!" << std::endl; | |
std::cerr << "Then use the following command:" << std::endl; | |
std::cerr << "./yolox ../model_trt.engine -i ../../../assets/dog.jpg // deserialize file and run inference" << std::endl; | |
return -1; | |
} | |
const std::string input_image_path {argv[3]}; | |
//std::vector<std::string> file_names; | |
//if (read_files_in_dir(argv[2], file_names) < 0) { | |
//std::cout << "read_files_in_dir failed." << std::endl; | |
//return -1; | |
//} | |
IRuntime* runtime = createInferRuntime(gLogger); | |
assert(runtime != nullptr); | |
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); | |
assert(engine != nullptr); | |
IExecutionContext* context = engine->createExecutionContext(); | |
assert(context != nullptr); | |
delete[] trtModelStream; | |
auto out_dims = engine->getBindingDimensions(1); | |
auto output_size = 1; | |
for(int j=0;j<out_dims.nbDims;j++) { | |
output_size *= out_dims.d[j]; | |
} | |
static float* prob = new float[output_size]; | |
cv::Mat img = cv::imread(input_image_path); | |
int img_w = img.cols; | |
int img_h = img.rows; | |
cv::Mat pr_img = static_resize(img); | |
std::cout << "blob image" << std::endl; | |
float* blob; | |
blob = blobFromImage(pr_img); | |
float scale = std::min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0)); | |
// run inference | |
auto start = std::chrono::system_clock::now(); | |
doInference(*context, blob, prob, output_size, pr_img.size()); | |
auto end = std::chrono::system_clock::now(); | |
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl; | |
std::vector<Object> objects; | |
decode_outputs(prob, objects, scale, img_w, img_h); | |
draw_objects(img, objects, input_image_path); | |
// delete the pointer to the float | |
delete blob; | |
// destroy the engine | |
context->destroy(); | |
engine->destroy(); | |
runtime->destroy(); | |
return 0; | |
} | |