Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
# Copyright (c) Megvii Inc. All rights reserved. | |
import math | |
from loguru import logger | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from yolox.utils import bboxes_iou, cxcywh2xyxy, meshgrid, visualize_assign | |
from .losses import IOUloss | |
from .network_blocks import BaseConv, DWConv | |
class YOLOXHead(nn.Module): | |
def __init__( | |
self, | |
num_classes, | |
width=1.0, | |
strides=[8, 16, 32], | |
in_channels=[256, 512, 1024], | |
act="silu", | |
depthwise=False, | |
): | |
""" | |
Args: | |
act (str): activation type of conv. Defalut value: "silu". | |
depthwise (bool): whether apply depthwise conv in conv branch. Defalut value: False. | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.decode_in_inference = True # for deploy, set to False | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
self.cls_preds = nn.ModuleList() | |
self.reg_preds = nn.ModuleList() | |
self.obj_preds = nn.ModuleList() | |
self.stems = nn.ModuleList() | |
Conv = DWConv if depthwise else BaseConv | |
for i in range(len(in_channels)): | |
self.stems.append( | |
BaseConv( | |
in_channels=int(in_channels[i] * width), | |
out_channels=int(256 * width), | |
ksize=1, | |
stride=1, | |
act=act, | |
) | |
) | |
self.cls_convs.append( | |
nn.Sequential( | |
*[ | |
Conv( | |
in_channels=int(256 * width), | |
out_channels=int(256 * width), | |
ksize=3, | |
stride=1, | |
act=act, | |
), | |
Conv( | |
in_channels=int(256 * width), | |
out_channels=int(256 * width), | |
ksize=3, | |
stride=1, | |
act=act, | |
), | |
] | |
) | |
) | |
self.reg_convs.append( | |
nn.Sequential( | |
*[ | |
Conv( | |
in_channels=int(256 * width), | |
out_channels=int(256 * width), | |
ksize=3, | |
stride=1, | |
act=act, | |
), | |
Conv( | |
in_channels=int(256 * width), | |
out_channels=int(256 * width), | |
ksize=3, | |
stride=1, | |
act=act, | |
), | |
] | |
) | |
) | |
self.cls_preds.append( | |
nn.Conv2d( | |
in_channels=int(256 * width), | |
out_channels=self.num_classes, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
) | |
self.reg_preds.append( | |
nn.Conv2d( | |
in_channels=int(256 * width), | |
out_channels=4, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
) | |
self.obj_preds.append( | |
nn.Conv2d( | |
in_channels=int(256 * width), | |
out_channels=1, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
) | |
self.use_l1 = False | |
self.l1_loss = nn.L1Loss(reduction="none") | |
self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none") | |
self.iou_loss = IOUloss(reduction="none") | |
self.strides = strides | |
self.grids = [torch.zeros(1)] * len(in_channels) | |
def initialize_biases(self, prior_prob): | |
for conv in self.cls_preds: | |
b = conv.bias.view(1, -1) | |
b.data.fill_(-math.log((1 - prior_prob) / prior_prob)) | |
conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
for conv in self.obj_preds: | |
b = conv.bias.view(1, -1) | |
b.data.fill_(-math.log((1 - prior_prob) / prior_prob)) | |
conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
def forward(self, xin, labels=None, imgs=None): | |
outputs = [] | |
origin_preds = [] | |
x_shifts = [] | |
y_shifts = [] | |
expanded_strides = [] | |
for k, (cls_conv, reg_conv, stride_this_level, x) in enumerate( | |
zip(self.cls_convs, self.reg_convs, self.strides, xin) | |
): | |
# print("before stems x", torch.isnan(x).any()) | |
x = self.stems[k](x) | |
cls_x = x | |
reg_x = x | |
cls_feat = cls_conv(cls_x) | |
cls_output = self.cls_preds[k](cls_feat) | |
reg_feat = reg_conv(reg_x) | |
reg_output = self.reg_preds[k](reg_feat) | |
obj_output = self.obj_preds[k](reg_feat) | |
# DEBUG HERE | |
# print("="*80) | |
# print("x", torch.isnan(x).any()) | |
# print("cls_feat", torch.isnan(cls_feat).any()) | |
# print("reg_feat", torch.isnan(reg_feat).any()) | |
# print("cls_output", torch.isnan(cls_output).any()) | |
# print("reg_output", torch.isnan(reg_output).any()) | |
# print("obj_output", torch.isnan(obj_output).any()) | |
# if torch.isnan(obj_output).any(): | |
# if torch.distributed.get_rank() == 0: | |
# import pdb; pdb.set_trace() | |
# else: | |
# torch.distributed.barrier() | |
# print("="*80) | |
if self.training: | |
output = torch.cat([reg_output, obj_output, cls_output], 1) | |
output, grid = self.get_output_and_grid( | |
output, k, stride_this_level, xin[0].type() | |
) | |
x_shifts.append(grid[:, :, 0]) | |
y_shifts.append(grid[:, :, 1]) | |
expanded_strides.append( | |
torch.zeros(1, grid.shape[1]) | |
.fill_(stride_this_level) | |
.type_as(xin[0]) | |
) | |
if self.use_l1: | |
batch_size = reg_output.shape[0] | |
hsize, wsize = reg_output.shape[-2:] | |
reg_output = reg_output.view( | |
batch_size, 1, 4, hsize, wsize | |
) | |
reg_output = reg_output.permute(0, 1, 3, 4, 2).reshape( | |
batch_size, -1, 4 | |
) | |
origin_preds.append(reg_output.clone()) | |
else: | |
output = torch.cat( | |
[reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1 | |
) | |
outputs.append(output) | |
if self.training: | |
return self.get_losses( | |
imgs, | |
x_shifts, | |
y_shifts, | |
expanded_strides, | |
labels, | |
torch.cat(outputs, 1), | |
origin_preds, | |
dtype=xin[0].dtype, | |
) | |
else: | |
self.hw = [x.shape[-2:] for x in outputs] | |
# [batch, n_anchors_all, 85] | |
outputs = torch.cat( | |
[x.flatten(start_dim=2) for x in outputs], dim=2 | |
).permute(0, 2, 1) | |
if self.decode_in_inference: | |
return self.decode_outputs(outputs, dtype=xin[0].type()) | |
else: | |
return outputs | |
def get_output_and_grid(self, output, k, stride, dtype): | |
grid = self.grids[k] | |
batch_size = output.shape[0] | |
n_ch = 5 + self.num_classes | |
hsize, wsize = output.shape[-2:] | |
if grid.shape[2:4] != output.shape[2:4]: | |
yv, xv = meshgrid([torch.arange(hsize), torch.arange(wsize)]) | |
grid = torch.stack((xv, yv), 2).view(1, 1, hsize, wsize, 2).type(dtype) | |
self.grids[k] = grid | |
output = output.view(batch_size, 1, n_ch, hsize, wsize) | |
output = output.permute(0, 1, 3, 4, 2).reshape( | |
batch_size, hsize * wsize, -1 | |
) | |
grid = grid.view(1, -1, 2) | |
output[..., :2] = (output[..., :2] + grid) * stride | |
output[..., 2:4] = torch.exp(output[..., 2:4]) * stride | |
return output, grid | |
def decode_outputs(self, outputs, dtype): | |
grids = [] | |
strides = [] | |
for (hsize, wsize), stride in zip(self.hw, self.strides): | |
yv, xv = meshgrid([torch.arange(hsize), torch.arange(wsize)]) | |
grid = torch.stack((xv, yv), 2).view(1, -1, 2) | |
grids.append(grid) | |
shape = grid.shape[:2] | |
strides.append(torch.full((*shape, 1), stride)) | |
grids = torch.cat(grids, dim=1).type(dtype) | |
strides = torch.cat(strides, dim=1).type(dtype) | |
outputs = torch.cat([ | |
(outputs[..., 0:2] + grids) * strides, | |
torch.exp(outputs[..., 2:4]) * strides, | |
outputs[..., 4:] | |
], dim=-1) | |
return outputs | |
def get_losses( | |
self, | |
imgs, | |
x_shifts, | |
y_shifts, | |
expanded_strides, | |
labels, | |
outputs, | |
origin_preds, | |
dtype, | |
): | |
bbox_preds = outputs[:, :, :4] # [batch, n_anchors_all, 4] | |
obj_preds = outputs[:, :, 4:5] # [batch, n_anchors_all, 1] | |
cls_preds = outputs[:, :, 5:] # [batch, n_anchors_all, n_cls] | |
# calculate targets | |
nlabel = (labels.sum(dim=2) > 0).sum(dim=1) # number of objects | |
total_num_anchors = outputs.shape[1] | |
x_shifts = torch.cat(x_shifts, 1) # [1, n_anchors_all] | |
y_shifts = torch.cat(y_shifts, 1) # [1, n_anchors_all] | |
expanded_strides = torch.cat(expanded_strides, 1) | |
if self.use_l1: | |
origin_preds = torch.cat(origin_preds, 1) | |
cls_targets = [] | |
reg_targets = [] | |
l1_targets = [] | |
obj_targets = [] | |
fg_masks = [] | |
num_fg = 0.0 | |
num_gts = 0.0 | |
for batch_idx in range(outputs.shape[0]): | |
num_gt = int(nlabel[batch_idx]) | |
num_gts += num_gt | |
if num_gt == 0: | |
cls_target = outputs.new_zeros((0, self.num_classes)) | |
reg_target = outputs.new_zeros((0, 4)) | |
l1_target = outputs.new_zeros((0, 4)) | |
obj_target = outputs.new_zeros((total_num_anchors, 1)) | |
fg_mask = outputs.new_zeros(total_num_anchors).bool() | |
else: | |
gt_bboxes_per_image = labels[batch_idx, :num_gt, 1:5] | |
gt_classes = labels[batch_idx, :num_gt, 0] | |
bboxes_preds_per_image = bbox_preds[batch_idx] | |
try: | |
( | |
gt_matched_classes, | |
fg_mask, | |
pred_ious_this_matching, | |
matched_gt_inds, | |
num_fg_img, | |
) = self.get_assignments( # noqa | |
batch_idx, | |
num_gt, | |
gt_bboxes_per_image, | |
gt_classes, | |
bboxes_preds_per_image, | |
expanded_strides, | |
x_shifts, | |
y_shifts, | |
cls_preds, | |
obj_preds, | |
) | |
except RuntimeError as e: | |
# TODO: the string might change, consider a better way | |
if "CUDA out of memory. " not in str(e): | |
raise # RuntimeError might not caused by CUDA OOM | |
logger.error( | |
"OOM RuntimeError is raised due to the huge memory cost during label assignment. \ | |
CPU mode is applied in this batch. If you want to avoid this issue, \ | |
try to reduce the batch size or image size." | |
) | |
torch.cuda.empty_cache() | |
( | |
gt_matched_classes, | |
fg_mask, | |
pred_ious_this_matching, | |
matched_gt_inds, | |
num_fg_img, | |
) = self.get_assignments( # noqa | |
batch_idx, | |
num_gt, | |
gt_bboxes_per_image, | |
gt_classes, | |
bboxes_preds_per_image, | |
expanded_strides, | |
x_shifts, | |
y_shifts, | |
cls_preds, | |
obj_preds, | |
"cpu", | |
) | |
if num_fg_img == 0: | |
cls_target = outputs.new_zeros((0, self.num_classes)) | |
reg_target = outputs.new_zeros((0, 4)) | |
if self.use_l1: | |
l1_target = outputs.new_zeros((0, 4)) | |
obj_target = outputs.new_zeros((total_num_anchors, 1)) | |
fg_mask = outputs.new_zeros(total_num_anchors).bool() | |
else: | |
torch.cuda.empty_cache() | |
num_fg += num_fg_img | |
cls_target = F.one_hot( | |
gt_matched_classes.to(torch.int64), self.num_classes | |
) * pred_ious_this_matching.unsqueeze(-1) | |
obj_target = fg_mask.unsqueeze(-1) | |
reg_target = gt_bboxes_per_image[matched_gt_inds] | |
if self.use_l1: | |
l1_target = self.get_l1_target( | |
outputs.new_zeros((num_fg_img, 4)), | |
gt_bboxes_per_image[matched_gt_inds], | |
expanded_strides[0][fg_mask], | |
x_shifts=x_shifts[0][fg_mask], | |
y_shifts=y_shifts[0][fg_mask], | |
) | |
cls_targets.append(cls_target) | |
reg_targets.append(reg_target) | |
obj_targets.append(obj_target.to(dtype)) | |
fg_masks.append(fg_mask) | |
if self.use_l1: | |
l1_targets.append(l1_target) | |
cls_targets = torch.cat(cls_targets, 0) | |
reg_targets = torch.cat(reg_targets, 0) | |
obj_targets = torch.cat(obj_targets, 0) | |
fg_masks = torch.cat(fg_masks, 0) | |
if self.use_l1: | |
l1_targets = torch.cat(l1_targets, 0) | |
num_fg = max(num_fg, 1) | |
loss_iou = ( | |
self.iou_loss(bbox_preds.view(-1, 4)[fg_masks], reg_targets) | |
).sum() / num_fg | |
loss_obj = ( | |
self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets) | |
).sum() / num_fg | |
loss_cls = ( | |
self.bcewithlog_loss( | |
cls_preds.view(-1, self.num_classes)[fg_masks], cls_targets | |
) | |
).sum() / num_fg | |
if self.use_l1: | |
loss_l1 = ( | |
self.l1_loss(origin_preds.view(-1, 4)[fg_masks], l1_targets) | |
).sum() / num_fg | |
else: | |
loss_l1 = 0.0 | |
reg_weight = 5.0 | |
loss_cls *= 0.0 | |
loss = reg_weight * loss_iou + loss_obj + loss_cls + loss_l1 | |
return ( | |
loss, | |
reg_weight * loss_iou, | |
loss_obj, | |
loss_cls, | |
loss_l1, | |
num_fg / max(num_gts, 1), | |
) | |
def get_l1_target(self, l1_target, gt, stride, x_shifts, y_shifts, eps=1e-8): | |
l1_target[:, 0] = gt[:, 0] / stride - x_shifts | |
l1_target[:, 1] = gt[:, 1] / stride - y_shifts | |
l1_target[:, 2] = torch.log(gt[:, 2] / stride + eps) | |
l1_target[:, 3] = torch.log(gt[:, 3] / stride + eps) | |
return l1_target | |
def get_assignments( | |
self, | |
batch_idx, | |
num_gt, | |
gt_bboxes_per_image, | |
gt_classes, | |
bboxes_preds_per_image, | |
expanded_strides, | |
x_shifts, | |
y_shifts, | |
cls_preds, | |
obj_preds, | |
mode="gpu", | |
): | |
if mode == "cpu": | |
print("-----------Using CPU for the Current Batch-------------") | |
gt_bboxes_per_image = gt_bboxes_per_image.cpu().float() | |
bboxes_preds_per_image = bboxes_preds_per_image.cpu().float() | |
gt_classes = gt_classes.cpu().float() | |
expanded_strides = expanded_strides.cpu().float() | |
x_shifts = x_shifts.cpu() | |
y_shifts = y_shifts.cpu() | |
fg_mask, geometry_relation = self.get_geometry_constraint( | |
gt_bboxes_per_image, | |
expanded_strides, | |
x_shifts, | |
y_shifts, | |
) | |
# NOTE: Fix `selected index k out of range` | |
npa: int = fg_mask.sum().item() # number of positive anchors | |
if npa == 0: | |
gt_matched_classes = torch.zeros(0, device=fg_mask.device).long() | |
pred_ious_this_matching = torch.rand(0, device=fg_mask.device) | |
matched_gt_inds = gt_matched_classes | |
num_fg = npa | |
if mode == "cpu": | |
gt_matched_classes = gt_matched_classes.cuda() | |
fg_mask = fg_mask.cuda() | |
pred_ious_this_matching = pred_ious_this_matching.cuda() | |
matched_gt_inds = matched_gt_inds.cuda() | |
num_fg = num_fg.cuda() | |
return ( | |
gt_matched_classes, | |
fg_mask, | |
pred_ious_this_matching, | |
matched_gt_inds, | |
num_fg, | |
) | |
bboxes_preds_per_image = bboxes_preds_per_image[fg_mask] | |
cls_preds_ = cls_preds[batch_idx][fg_mask] | |
obj_preds_ = obj_preds[batch_idx][fg_mask] | |
num_in_boxes_anchor = bboxes_preds_per_image.shape[0] | |
if mode == "cpu": | |
gt_bboxes_per_image = gt_bboxes_per_image.cpu() | |
bboxes_preds_per_image = bboxes_preds_per_image.cpu() | |
pair_wise_ious = bboxes_iou(gt_bboxes_per_image, bboxes_preds_per_image, False) | |
gt_cls_per_image = ( | |
F.one_hot(gt_classes.to(torch.int64), self.num_classes) | |
.float() | |
) | |
pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) | |
if mode == "cpu": | |
cls_preds_, obj_preds_ = cls_preds_.cpu(), obj_preds_.cpu() | |
with torch.cuda.amp.autocast(enabled=False): | |
cls_preds_ = ( | |
cls_preds_.float().sigmoid_() * obj_preds_.float().sigmoid_() | |
).sqrt() | |
pair_wise_cls_loss = F.binary_cross_entropy( | |
cls_preds_.unsqueeze(0).repeat(num_gt, 1, 1), | |
gt_cls_per_image.unsqueeze(1).repeat(1, num_in_boxes_anchor, 1), | |
reduction="none" | |
).sum(-1) | |
del cls_preds_ | |
cost = ( | |
pair_wise_cls_loss * 0.0 | |
+ 3.0 * pair_wise_ious_loss | |
+ float(1e6) * (~geometry_relation) | |
) | |
( | |
num_fg, | |
gt_matched_classes, | |
pred_ious_this_matching, | |
matched_gt_inds, | |
) = self.simota_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask) | |
del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss | |
if mode == "cpu": | |
gt_matched_classes = gt_matched_classes.cuda() | |
fg_mask = fg_mask.cuda() | |
pred_ious_this_matching = pred_ious_this_matching.cuda() | |
matched_gt_inds = matched_gt_inds.cuda() | |
return ( | |
gt_matched_classes, | |
fg_mask, | |
pred_ious_this_matching, | |
matched_gt_inds, | |
num_fg, | |
) | |
def get_geometry_constraint( | |
self, gt_bboxes_per_image, expanded_strides, x_shifts, y_shifts, | |
): | |
""" | |
Calculate whether the center of an object is located in a fixed range of | |
an anchor. This is used to avert inappropriate matching. It can also reduce | |
the number of candidate anchors so that the GPU memory is saved. | |
""" | |
expanded_strides_per_image = expanded_strides[0] | |
x_centers_per_image = ((x_shifts[0] + 0.5) * expanded_strides_per_image).unsqueeze(0) | |
y_centers_per_image = ((y_shifts[0] + 0.5) * expanded_strides_per_image).unsqueeze(0) | |
# in fixed center | |
center_radius = 1.5 | |
center_dist = expanded_strides_per_image.unsqueeze(0) * center_radius | |
gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0:1]) - center_dist | |
gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0:1]) + center_dist | |
gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1:2]) - center_dist | |
gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1:2]) + center_dist | |
c_l = x_centers_per_image - gt_bboxes_per_image_l | |
c_r = gt_bboxes_per_image_r - x_centers_per_image | |
c_t = y_centers_per_image - gt_bboxes_per_image_t | |
c_b = gt_bboxes_per_image_b - y_centers_per_image | |
center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2) | |
is_in_centers = center_deltas.min(dim=-1).values > 0.0 | |
anchor_filter = is_in_centers.sum(dim=0) > 0 | |
geometry_relation = is_in_centers[:, anchor_filter] | |
return anchor_filter, geometry_relation | |
def simota_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask): | |
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8) | |
n_candidate_k = min(10, pair_wise_ious.size(1)) | |
topk_ious, _ = torch.topk(pair_wise_ious, n_candidate_k, dim=1) | |
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1) | |
for gt_idx in range(num_gt): | |
_, pos_idx = torch.topk( | |
cost[gt_idx], k=dynamic_ks[gt_idx], largest=False | |
) | |
matching_matrix[gt_idx][pos_idx] = 1 | |
del topk_ious, dynamic_ks, pos_idx | |
anchor_matching_gt = matching_matrix.sum(0) | |
# deal with the case that one anchor matches multiple ground-truths | |
if anchor_matching_gt.max() > 1: | |
multiple_match_mask = anchor_matching_gt > 1 | |
_, cost_argmin = torch.min(cost[:, multiple_match_mask], dim=0) | |
matching_matrix[:, multiple_match_mask] *= 0 | |
matching_matrix[cost_argmin, multiple_match_mask] = 1 | |
fg_mask_inboxes = anchor_matching_gt > 0 | |
num_fg = fg_mask_inboxes.sum().item() | |
fg_mask[fg_mask.clone()] = fg_mask_inboxes | |
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) | |
gt_matched_classes = gt_classes[matched_gt_inds] | |
pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[ | |
fg_mask_inboxes | |
] | |
return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds | |
def visualize_assign_result(self, xin, labels=None, imgs=None, save_prefix="assign_vis_"): | |
# original forward logic | |
outputs, x_shifts, y_shifts, expanded_strides = [], [], [], [] | |
# TODO: use forward logic here. | |
for k, (cls_conv, reg_conv, stride_this_level, x) in enumerate( | |
zip(self.cls_convs, self.reg_convs, self.strides, xin) | |
): | |
x = self.stems[k](x) | |
cls_x = x | |
reg_x = x | |
cls_feat = cls_conv(cls_x) | |
cls_output = self.cls_preds[k](cls_feat) | |
reg_feat = reg_conv(reg_x) | |
reg_output = self.reg_preds[k](reg_feat) | |
obj_output = self.obj_preds[k](reg_feat) | |
output = torch.cat([reg_output, obj_output, cls_output], 1) | |
output, grid = self.get_output_and_grid(output, k, stride_this_level, xin[0].type()) | |
x_shifts.append(grid[:, :, 0]) | |
y_shifts.append(grid[:, :, 1]) | |
expanded_strides.append( | |
torch.full((1, grid.shape[1]), stride_this_level).type_as(xin[0]) | |
) | |
outputs.append(output) | |
outputs = torch.cat(outputs, 1) | |
bbox_preds = outputs[:, :, :4] # [batch, n_anchors_all, 4] | |
obj_preds = outputs[:, :, 4:5] # [batch, n_anchors_all, 1] | |
cls_preds = outputs[:, :, 5:] # [batch, n_anchors_all, n_cls] | |
# calculate targets | |
total_num_anchors = outputs.shape[1] | |
x_shifts = torch.cat(x_shifts, 1) # [1, n_anchors_all] | |
y_shifts = torch.cat(y_shifts, 1) # [1, n_anchors_all] | |
expanded_strides = torch.cat(expanded_strides, 1) | |
nlabel = (labels.sum(dim=2) > 0).sum(dim=1) # number of objects | |
for batch_idx, (img, num_gt, label) in enumerate(zip(imgs, nlabel, labels)): | |
img = imgs[batch_idx].permute(1, 2, 0).to(torch.uint8) | |
num_gt = int(num_gt) | |
if num_gt == 0: | |
fg_mask = outputs.new_zeros(total_num_anchors).bool() | |
else: | |
gt_bboxes_per_image = label[:num_gt, 1:5] | |
gt_classes = label[:num_gt, 0] | |
bboxes_preds_per_image = bbox_preds[batch_idx] | |
_, fg_mask, _, matched_gt_inds, _ = self.get_assignments( # noqa | |
batch_idx, num_gt, gt_bboxes_per_image, gt_classes, | |
bboxes_preds_per_image, expanded_strides, x_shifts, | |
y_shifts, cls_preds, obj_preds, | |
) | |
img = img.cpu().numpy().copy() # copy is crucial here | |
coords = torch.stack([ | |
((x_shifts + 0.5) * expanded_strides).flatten()[fg_mask], | |
((y_shifts + 0.5) * expanded_strides).flatten()[fg_mask], | |
], 1) | |
xyxy_boxes = cxcywh2xyxy(gt_bboxes_per_image) | |
save_name = save_prefix + str(batch_idx) + ".png" | |
img = visualize_assign(img, xyxy_boxes, coords, matched_gt_inds, save_name) | |
logger.info(f"save img to {save_name}") | |