compositional_test / multimodal /open_flamingo /eval /evaluate_find_showcase.py
chendl's picture
Add application file
0b7b08a
import argparse
import json
from math import ceil
import os
import random
import uuid
from collections import defaultdict
from typing import Callable
import time
import cv2
import webdataset as wds
from sklearn.metrics import recall_score, average_precision_score
import more_itertools
import numpy as np
import torch
from coco_metric import compute_cider, postprocess_captioning_generation
from eval_datasets import VQADataset
from tqdm import tqdm
from collections import Counter
from vqa_metric import compute_vqa_accuracy, compute_gqa_accuracy
from open_flamingo.eval.classification import (
compute_per_sample_probs,
compute_per_sample_loss,
)
from open_flamingo.eval.imagenet_utils import (
openai_imagenet_classnames,
IMAGENET_1K_CLASS_ID_TO_LABEL,
)
from open_flamingo.src.factory import create_model_and_transforms
from PIL import Image
from io import BytesIO
import base64
from open_flamingo.train.distributed import init_distributed_device, world_info_from_env
import string
from lavis.datasets.builders import load_dataset
from open_flamingo.eval.task.reg import evaluate_reg
from open_flamingo.eval.task.gqa import GQADataset
from open_flamingo.eval.task.vl_checklist import evaluate_vlc
from open_flamingo.eval.task.crepe import evaluate_crepe
def get_iou(box1, box2):
# box1 and box2 should be in the format [x1, y1, x2, y2]
intersection = max(0, min(box1[2], box2[2]) - max(box1[0], box2[0])) * \
max(0, min(box1[3], box2[3]) - max(box1[1], box2[1]))
area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = area_box1 + area_box2 - intersection
iou = intersection / union if union > 0 else 0
return iou
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
parser = argparse.ArgumentParser()
parser.add_argument("--lm_path", type=str, default="facebook/opt-1.3b")
parser.add_argument("--lm_tokenizer_path", type=str, default="facebook/opt-30b")
parser.add_argument("--vision_encoder_path", default="ViT-L-14", type=str)
parser.add_argument("--vision_encoder_pretrained", default="openai", type=str)
parser.add_argument("--checkpoint_path", type=str, required=True)
parser.add_argument(
"--results_file", type=str, default=None, help="JSON file to save results"
)
# Trial arguments
parser.add_argument("--shots", nargs="+", default=[0, 4, 8, 16, 32], type=int)
parser.add_argument(
"--num_trials",
type=int,
default=1,
help="Number of trials to run for each shot using different demonstrations",
)
parser.add_argument(
"--trial_seeds",
nargs="+",
default=[0],
help="Seeds to use for each trial for picking demonstrations and eval sets",
)
parser.add_argument(
"--num_samples", type=int, default=5000, help="Number of samples to evaluate on"
)
parser.add_argument("--batch_size", type=int, default=8)
# Per-dataset evaluation flags
parser.add_argument(
"--eval_coco",
action="store_true",
default=False,
help="Whether to evaluate on COCO.",
)
parser.add_argument(
"--eval_vqav2",
action="store_true",
default=False,
help="Whether to evaluate on VQAV2.",
)
parser.add_argument(
"--eval_ok_vqa",
action="store_true",
default=False,
help="Whether to evaluate on OK-VQA.",
)
parser.add_argument(
"--eval_imagenet",
action="store_true",
default=False,
help="Whether to evaluate on ImageNet.",
)
parser.add_argument(
"--eval_flickr30",
action="store_true",
default=False,
help="Whether to evaluate on Flickr30.",
)
parser.add_argument(
"--eval_refcoco",
action="store_true",
default=False,
help="Whether to evaluate on RefCOCO.",
)
# Dataset arguments
## Flickr30 Dataset
parser.add_argument(
"--flickr_image_dir_path",
type=str,
help="Path to the flickr30/flickr30k_images directory.",
default=None,
)
parser.add_argument(
"--flickr_annotations_json_path",
type=str,
help="Path to the dataset_flickr30k_coco_style.json file.",
default=None,
)
## COCO Dataset
parser.add_argument(
"--coco_image_dir_path",
type=str,
help="Path to the flickr30/flickr30k_images directory.",
default=None,
)
parser.add_argument(
"--coco_annotations_json_path",
type=str,
default=None,
)
## VQAV2 Dataset
parser.add_argument(
"--vqav2_image_dir_path",
type=str,
default=None,
)
parser.add_argument(
"--vqav2_questions_json_path",
type=str,
default=None,
)
parser.add_argument(
"--vqav2_annotations_json_path",
type=str,
default=None,
)
## OK-VQA Dataset
parser.add_argument(
"--ok_vqa_image_dir_path",
type=str,
help="Path to the vqav2/train2014 directory.",
default=None,
)
parser.add_argument(
"--ok_vqa_questions_json_path",
type=str,
help="Path to the v2_OpenEnded_mscoco_train2014_questions.json file.",
default=None,
)
parser.add_argument(
"--ok_vqa_annotations_json_path",
type=str,
help="Path to the v2_mscoco_train2014_annotations.json file.",
default=None,
)
## Imagenet dataset
parser.add_argument("--imagenet_root", type=str, default="/tmp")
## RefCOCO dataset
parser.add_argument("--refcoco_tsvfile", type=str, default=None)
parser.add_argument(
"--location_token_num",
default=1000,
type=int,
)
# distributed training
parser.add_argument(
"--dist-url",
default="env://",
type=str,
help="url used to set up distributed training",
)
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--horovod",
default=False,
action="store_true",
help="Use horovod for distributed training.",
)
parser.add_argument(
"--no-set-device-rank",
default=False,
action="store_true",
help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc).",
)
parser.add_argument(
"--dist",
default=False,
action="store_true",
)
parser.add_argument(
"--lora",
default=False,
action="store_true",
)
parser.add_argument(
"--lora_r",
default=16,
type=int,
required=False,
)
parser.add_argument(
"--legacy",
default=False,
action="store_true",
)
parser.add_argument(
"--special",
default=False,
action="store_true",
)
parser.add_argument(
"--id",
default=0,
type=int,
required=False,
)
parser.add_argument(
"--eval_gqa",
default=False,
action="store_true",
)
parser.add_argument(
"--use_sam",
default=None,
type=str,
required=False,
)
parser.add_argument(
"--add_visual_token",
default=False,
action="store_true",
)
parser.add_argument(
"--use_format_v2",
default=False,
action="store_true",
)
parser.add_argument(
"--eval_aro",
default=False,
action="store_true",
)
parser.add_argument(
"--eval_pisc",
default=False,
action="store_true",
)
parser.add_argument(
"--eval_reg",
default=False,
action="store_true",
)
parser.add_argument(
"--eval_vlc",
default=False,
action="store_true",
)
parser.add_argument(
"--eval_crepe",
default=False,
action="store_true",
)
parser.add_argument(
"--level",
default=4,
type=int,
)
parser.add_argument(
"--type",
default="swap",
type=str,
)
class OKVQAPostProcess():
def __init__(self):
self._lemmatizer = None
def _lemmatize(self, answers):
def apply(answer):
doc = self.lemmatizer(answer)
words = []
for token in doc:
if token.pos_ in ["NOUN", "VERB"]:
words.append(token.lemma_)
else:
words.append(token.text)
answer = " ".join(words)
return answer
return [apply(answer) for answer in answers]
@property
def lemmatizer(self):
if self._lemmatizer is None:
try:
import spacy
self._lemmatizer = spacy.load("en_core_web_sm")
except ImportError:
logging.error(
"""
Please install spacy and en_core_web_sm model to apply lemmatization.
python -m spacy download en_core_web_sm
OR
import spacy.cli
spacy.cli.download("en_core_web_sm")
"""
)
exit(1)
return self._lemmatizer
def main():
args = parser.parse_args()
if args.dist:
args.local_rank, args.rank, args.world_size = world_info_from_env()
print(f"local_rank: {args.local_rank} rank: {args.rank} world_size: {args.world_size}")
device_id = init_distributed_device(args)
else:
args.rank = 0
args.world_size = 1
print(f"rank: {args.rank} world_size: {args.world_size}")
if "sam" in args.checkpoint_path:
args.use_sam = "vit_l"
args.add_visual_token = True
if "lora" in args.checkpoint_path:
args.lora = True
args.add_pe = False
args.add_box = True
args.relation = False
args.enhance_data = False
args.use_format_v2 = True
import hashlib
args.id = hashlib.sha224(args.checkpoint_path.encode()).hexdigest()
# load model
flamingo, image_processor, tokenizer, vis_embed_size = create_model_and_transforms(
args.vision_encoder_path,
args.vision_encoder_pretrained,
args.lm_path,
args.lm_tokenizer_path,
location_token_num=args.location_token_num,
lora=args.lora,
lora_r=16,
use_sam=args.use_sam,
add_visual_token=args.add_visual_token,
use_format_v2=args.use_format_v2,
add_box=args.add_box,
add_pe=args.add_pe,
add_relation=args.relation,
enhance_data=args.enhance_data,
)
flamingo.use_format_v2 = args.use_format_v2
if args.special:
flamingo.special = True
else:
flamingo.special = False
if args.legacy:
flamingo.legacy = True
print("use legacy evaluation")
flamingo.step_num = int(args.checkpoint_path.split("/")[-1].split(".")[0].split("_")[-1])
flamingo.expr_name = args.checkpoint_path.split("/")[-2]
if args.rank == 0:
print("legacy", True if hasattr(flamingo, "legacy") else False)
print("step:", flamingo.step_num)
print("expr:", flamingo.expr_name)
print("use format v2:", flamingo.use_format_v2)
print(args)
checkpoint = torch.load(args.checkpoint_path, map_location="cpu")
model_state_dict = {}
for key in checkpoint["model_state_dict"].keys():
model_state_dict[key.replace("module.", "")] = checkpoint["model_state_dict"][key]
if "vision_encoder.logit_scale"in model_state_dict:
# previous checkpoint has some unnecessary weights
del model_state_dict["vision_encoder.logit_scale"]
del model_state_dict["vision_encoder.visual.proj"]
del model_state_dict["vision_encoder.visual.ln_post.weight"]
del model_state_dict["vision_encoder.visual.ln_post.bias"]
flamingo.load_state_dict(model_state_dict, strict=True)
results = defaultdict(list)
if args.eval_coco:
print("Evaluating on COCO...")
for shot in args.shots:
scores = []
for seed, trial in zip(args.trial_seeds, range(args.num_trials)):
cider_score = evaluate_coco_flickr(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
batch_size=args.batch_size,
image_dir_path=args.coco_image_dir_path,
annotations_json_path=args.coco_annotations_json_path,
device=args.device,
seed=seed,
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
)
print(f"Shots {shot} Trial {trial} CIDEr score: {cider_score}")
scores.append(cider_score)
print(f"Shots {shot} Mean CIDEr score: {np.mean(scores)}")
results["coco"].append(
{"shots": shot, "trials": scores, "mean": np.mean(scores)}
)
if args.eval_ok_vqa:
print("Evaluating on OK-VQA...")
for shot in args.shots:
scores = []
for seed, trial in zip(args.trial_seeds, range(args.num_trials)):
ok_vqa_score = evaluate_vqa(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
batch_size=args.batch_size,
image_dir_path=args.ok_vqa_image_dir_path,
questions_json_path=args.ok_vqa_questions_json_path,
annotations_json_path=args.ok_vqa_annotations_json_path,
vqa_dataset="ok_vqa",
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
)
results["ok_vqa"].append(
{"shots": shot, "score": ok_vqa_score}
)
if args.eval_vqav2:
print("Evaluating on VQAv2...")
for shot in args.shots:
scores = []
for seed, trial in zip(args.trial_seeds, range(args.num_trials)):
vqa_score = evaluate_vqa(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
batch_size=args.batch_size,
image_dir_path=args.vqav2_image_dir_path,
questions_json_path=args.vqav2_questions_json_path,
annotations_json_path=args.vqav2_annotations_json_path,
vqa_dataset="vqa",
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
)
results["vqav2"].append(
{"shots": shot, "score": vqa_score}
)
if args.eval_gqa:
print("Evaluating on GQA...")
for shot in args.shots:
scores = []
for seed, trial in zip(args.trial_seeds, range(args.num_trials)):
vqa_score = evaluate_vqa(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
batch_size=args.batch_size,
vqa_dataset="gqa",
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
)
results["gqa"].append(
{"shots": shot, "score": vqa_score}
)
if args.eval_refcoco:
print("Evaluating on RefCOCO...")
refcoco_score = evaluate_refcoco(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
batch_size=args.batch_size,
device=args.device,
tsvfile=args.refcoco_tsvfile,
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
)
results["refcoco"].append(
{"score": refcoco_score}
)
if args.eval_aro:
print("Evaluating on ARO...")
aro_score = evaluate_aro(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
batch_size=args.batch_size,
device=args.device,
tsvfile=args.refcoco_tsvfile,
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
add_relation=args.relation,
)
results["aro"].append(
{"score": aro_score}
)
if args.eval_pisc:
print("Evaluating on ARO...")
aro_score = evaluate_pisc(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
batch_size=args.batch_size,
device=args.device,
tsvfile=args.refcoco_tsvfile,
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
)
results["pisc"].append(
{"score": aro_score}
)
if args.eval_reg:
print("Evaluating on Referring Expression Generation...")
cider = evaluate_reg(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
)
results["reg"].append(
{"score": cider}
)
if args.eval_vlc:
print("Evaluating on VL-checklist...")
vlc_score = evaluate_vlc(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
)
results["vlc"].append(
{"score": vlc_score}
)
if args.eval_crepe:
print("Evaluating on CREPE...")
crepe_score = evaluate_crepe(
model=flamingo,
tokenizer=tokenizer,
image_processor=image_processor,
vis_embed_size=vis_embed_size,
rank=args.rank,
world_size=args.world_size,
id=args.id,
level=args.level,
type=args.type,
)
results["crepe"].append(
{"score": crepe_score}
)
def prepare_batch_images(batch, image_processor):
batch_images = None
for b in batch:
b_image = image_processor(b["image"]).unsqueeze(0).unsqueeze(1).unsqueeze(0)
if batch_images is None:
batch_images = b_image
else:
batch_images = torch.cat([batch_images, b_image], dim=0)
return batch_images
def get_outputs(
model,
batch_images,
attention_mask,
max_generation_length,
min_generation_length,
num_beams,
length_penalty,
input_ids,
image_start_index_list=None,
image_nums=None,
bad_words_ids=None,
):
with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
outputs = model.generate(
batch_images,
input_ids,
attention_mask=attention_mask,
max_new_tokens=max_generation_length,
min_length=min_generation_length,
num_beams=num_beams,
length_penalty=length_penalty,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
bad_words_ids=bad_words_ids,
)
outputs = outputs[:, len(input_ids[0]) :]
return outputs
def evaluate_coco_flickr(
model,
tokenizer,
image_processor,
batch_size,
image_dir_path,
annotations_json_path,
seed=42,
max_generation_length=20,
num_beams=1,
length_penalty=-2.0,
device=-1,
is_flickr=False,
vis_embed_size=None,
rank=0,
world_size=1,
id=0,
):
"""Evaluate a model on COCO dataset.
Args:
model (nn.Module): model to evaluate
tokenizer (transformers.PreTrainedTokenizer): tokenizer for the model
image_processor : image processor for the model
batch_size (int): batch size
image_dir_path (str, optional): path to the directory containing the images.
annotations_json_path (str, optional): path to the json file containing the annotations.
seed (int, optional): seed for random number generator. Defaults to 42.
max_generation_length (int, optional): maximum length of the generated caption. Defaults to 10.
num_beams (int, optional): number of beams to use for beam search. Defaults to 3.
length_penalty (float, optional): length penalty for beam search. Defaults to -2.0.
num_samples (int, optional): number of samples to evaluate on. Defaults to 5000.
query_set_size (int, optional): number of samples to use for query set. Defaults to 2048.
num_shots (int, optional): number of in-context samples to use. Defaults to 8.
device (int, optional): device to use. Defaults to -1.
num_workers (int, optional): number of workers to use for dataloader. Defaults to 4.
is_flickr (bool): defines if that data is COCO or Flickr. Defaults to False (COCO).
Returns:
float: CIDEr score
"""
# eval_dataset = COCOFlickrDataset(
# image_dir_path=image_dir_path,
# annotations_path=annotations_json_path,
# is_flickr=is_flickr,
# )
coco_dataset = load_dataset("coco_caption")
eval_dataset = coco_dataset["test"]
model.eval().cuda()
predictions = defaultdict()
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
# if "peft" in lang_encoder_name:
# lang_encoder_name = model.lang_encoder.base_model.model.__class__.__name__.lower()
try:
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
except:
pass
def get_prompt(sample):
return f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>"
tokenizer.padding_side = "left"
cnt = 0
if world_size > 1:
torch.distributed.barrier()
desc = "Running inference Flickr30" if is_flickr else "Running inference COCO"
for ii, batch in enumerate(more_itertools.chunked(
tqdm(eval_dataset, desc=desc, disable=(rank != 0)), batch_size
)):
if ii % world_size != rank:
continue
cnt += len(batch)
batch_images = prepare_batch_images(
batch=batch,
image_processor=image_processor,
).cuda()
batch_text = [get_prompt(s) for s in batch]
encodings = tokenizer(
batch_text,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"].cuda()
attention_mask = encodings["attention_mask"].cuda()
skip_special_tokens = False
if hasattr(model, "legacy") and model.legacy and "opt" in lang_encoder_name:
if rank == 0:
tqdm.write("use legacy model")
skip_special_tokens = True
for i in range(len(input_ids)):
media_token_index = (input_ids[i] == media_token_id).nonzero()[0,0]
endofmedia_token_index = (input_ids[i] == endofmedia_token_id).nonzero()[0,0]
input_ids[i, media_token_index - 1] = media_token_id
input_ids[i, media_token_index] = pad_token_id
input_ids[i, endofmedia_token_index - 1] = endofmedia_token_id
input_ids[i, endofmedia_token_index] = bos_token_id
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
if "llama" in lang_encoder_name:
attention_mask[input_ids == 0] = 0
outputs = get_outputs(
model=model,
batch_images=batch_images,
attention_mask=attention_mask,
max_generation_length=30,
min_generation_length=8,
num_beams=5,
length_penalty=0,
input_ids=input_ids,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
)
new_predictions = [
postprocess_captioning_generation(out).replace('"', "")
for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
]
# if rank == 0:
# tqdm.write(f"{batch_images.shape} {batch[0]} pred: {new_predictions[0]}")
for i, sample in enumerate(batch):
predictions[int(sample["image_id"])] = {
"caption": new_predictions[i],
}
results_path = (
f"flickrresults_{lang_encoder_name}_{rank}_{id}.json"
if is_flickr
else f"cocoresults_{lang_encoder_name}_{rank}_{id}.json"
)
with open(results_path, "w") as f:
f.write(
json.dumps(
[
{"image_id": k, "caption": predictions[k]["caption"]}
for k in predictions
],
indent=2,
)
)
print("save to", results_path)
del predictions
time.sleep(10)
if world_size > 1:
torch.distributed.barrier()
if rank == 0:
print(f"evaluate on rank {rank}. world size is {world_size}")
predictions = []
for rank_i in range(world_size):
part_results_path = (
f"flickrresults_{lang_encoder_name}_{rank_i}_{id}.json"
if is_flickr
else f"cocoresults_{lang_encoder_name}_{rank_i}_{id}.json"
)
print("load", part_results_path)
predictions.extend(json.load(open(part_results_path)))
os.remove(part_results_path)
print("num:", len(predictions))
results_path = (
f"flickrresults_{lang_encoder_name}.json"
if is_flickr
else f"cocoresults_{lang_encoder_name}.json"
)
json.dump(predictions, open(results_path, "w"), indent=2)
metrics = compute_cider(
result_path=results_path,
annotations_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/.cache/lavis/coco_gt/coco_karpathy_test_gt.json",
)
os.makedirs("eval_results", exist_ok=True)
acc = metrics["CIDEr"]
with open(os.path.join("eval_results", f"cococap_{model.expr_name}_{model.step_num}_{int(time.time())}_{acc}"), "w") as f:
f.write(json.dumps(predictions, indent=2))
# delete the temporary file
os.remove(results_path)
else:
metrics = {}
metrics["CIDEr"] = 0.0
return metrics["CIDEr"]
def evaluate_vqa(
model,
tokenizer,
image_processor,
batch_size,
image_dir_path=None,
questions_json_path=None,
annotations_json_path=None,
vqa_dataset="vqa",
vis_embed_size=None,
rank=0,
world_size=1,
id=0,
):
"""
Evaluate a model on VQA datasets. Currently supports VQA v2.0.
Args:
model (nn.Module): model to evaluate
tokenizer (transformers.PreTrainedTokenizer): tokenizer for the model
image_processor : image processor for the model
batch_size (int): batch size
image_dir_path (str): path to image directory
questions_json_path (str): path to questions json file
annotations_json_path (str): path to annotations json file
seed (int, optional): random seed. Defaults to 42.
max_generation_length (int, optional): max generation length. Defaults to 5.
num_beams (int, optional): number of beams to use for beam search. Defaults to 3.
length_penalty (float, optional): length penalty for beam search. Defaults to -2.0.
num_samples (int, optional): number of samples to evaluate on. Defaults to 5000 samples.
query_set_size (int, optional): size of the query set. Defaults to 2048.
num_shots (int, optional): number of shots to use. Defaults to 8.
device (int, optional): device to use. Defaults to -1 (cpu).
num_workers (int, optional): number of workers to use. Defaults to 4.
vqa_dataset (string): type of vqa dataset: currently supports vqa, ok_vqa. Defaults to vqa.
Returns:
float: accuracy score
"""
if world_size > 1:
torch.distributed.barrier()
if vqa_dataset == "gqa":
eval_dataset = GQADataset()
else:
eval_dataset = VQADataset(
image_dir_path=image_dir_path,
question_path=questions_json_path,
annotations_path=annotations_json_path,
vqa_dataset=vqa_dataset,
)
postprocessor = OKVQAPostProcess()
try:
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
except:
pass
def get_prompt(sample):
return f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>Question: {sample['question'].strip()} Short answer:"
# return f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>"
model.eval().cuda()
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
if "peft" in lang_encoder_name:
lang_encoder_name = model.lang_encoder.base_model.model.__class__.__name__.lower()
predictions = []
tokenizer.padding_side = "left"
if world_size > 1:
torch.distributed.barrier()
this_tot = 0
for ii, batch in enumerate(more_itertools.chunked(
tqdm(eval_dataset, desc="Running inference", disable=(rank != 0)), batch_size
)):
if ii % world_size != rank:
continue
batch_images = prepare_batch_images(
batch=batch,
image_processor=image_processor,
).cuda()
batch_text = [get_prompt(s) for s in batch]
encodings = tokenizer(
batch_text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=2000,
)
input_ids = encodings["input_ids"].cuda()
attention_mask = encodings["attention_mask"].cuda()
skip_special_tokens = True
if hasattr(model, "legacy") and model.legacy and "opt" in lang_encoder_name:
if rank == 0:
tqdm.write("use legacy model")
for i in range(len(input_ids)):
media_token_index = (input_ids[i] == media_token_id).nonzero()[0,0]
endofmedia_token_index = (input_ids[i] == endofmedia_token_id).nonzero()[0,0]
input_ids[i, media_token_index - 1] = media_token_id
input_ids[i, media_token_index] = pad_token_id
input_ids[i, endofmedia_token_index - 1] = endofmedia_token_id
input_ids[i, endofmedia_token_index] = bos_token_id
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
if "llama" in lang_encoder_name:
attention_mask[input_ids == 0] = 0
outputs = get_outputs(
model=model,
batch_images=batch_images,
attention_mask=attention_mask,
max_generation_length=10,
min_generation_length=1,
num_beams=5,
length_penalty=0,
input_ids=input_ids,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
)
# postprocess begin
new_predictions = [
out.strip().lower().strip(string.punctuation+" ") for out in tokenizer.batch_decode(outputs, skip_special_tokens=skip_special_tokens)
]
if vqa_dataset == "ok_vqa":
new_predictions = postprocessor._lemmatize(new_predictions)
if model.special:
for i in range(len(new_predictions)):
for answer, _ in Counter(batch[i]['answers']).most_common():
if answer in new_predictions[i]:
new_predictions[i] = answer
break
if "cant" in new_predictions[i] and "no" == answer:
new_predictions[i] = answer
break
if "can" in new_predictions[i] and "not" not in new_predictions[i] and "cant" not in new_predictions[i] and "yes" == answer:
new_predictions[i] = answer
break
this_tot += 1
if rank == 0 and this_tot % 20 == 0:
for i in range(1):
tqdm.write("model output: " + new_predictions[i])
predictions.extend(
[
{"answer": p, "question_id": sample["question_id"], "_question": sample["question"], "answers": sample["answers"]}
for p, sample in zip(new_predictions, batch)
]
)
with open(f"{vqa_dataset}_{lang_encoder_name}_results_part{rank}_{id}.json", "w") as f:
f.write(json.dumps(predictions))
print("save to", f"{vqa_dataset}_{lang_encoder_name}_results_part{rank}_{id}.json")
time.sleep(10)
if world_size > 1:
torch.distributed.barrier()
if rank == 0:
print(f"evaluate on rank {rank}. world size is {world_size}")
predictions = []
for rank_i in range(world_size):
print("load", f"{vqa_dataset}_{lang_encoder_name}_results_part{rank_i}_{id}.json")
predictions.extend(json.load(open(f"{vqa_dataset}_{lang_encoder_name}_results_part{rank_i}_{id}.json")))
os.remove(f"{vqa_dataset}_{lang_encoder_name}_results_part{rank_i}_{id}.json")
print("num:", len(predictions))
# save the predictions to a temporary file
random_uuid = str(uuid.uuid4())
with open(f"{vqa_dataset}results_{random_uuid}.json", "w") as f:
f.write(json.dumps(predictions, indent=4))
if vqa_dataset == "gqa":
acc = compute_gqa_accuracy(predictions)
else:
acc = compute_vqa_accuracy(
f"{vqa_dataset}results_{random_uuid}.json",
questions_json_path,
annotations_json_path,
vqa_dataset=vqa_dataset,
)
print(vqa_dataset, "score:", acc, "| save to", f"{vqa_dataset}results_{random_uuid}.json")
os.makedirs("eval_results", exist_ok=True)
with open(os.path.join("eval_results", f"{vqa_dataset}_{model.expr_name}_{model.step_num}_{int(time.time())}_{acc}"), "w") as f:
f.write(json.dumps(predictions, indent=2))
# delete the temporary file
os.remove(f"{vqa_dataset}results_{random_uuid}.json")
else:
time.sleep(5)
acc = 0.0
if world_size > 1:
torch.distributed.barrier()
return acc
def evaluate_refcoco(
model,
tokenizer,
image_processor,
batch_size,
tsvfile,
max_generation_length=20,
num_beams=3,
length_penalty=-2.0,
device=-1,
vis_embed_size=None,
rank=0,
world_size=1,
id=0,
):
model.eval().cuda()
loc_token_ids = []
for i in range(1000):
loc_token_ids.append(int(tokenizer(f"<loc_{i}>", add_special_tokens=False)["input_ids"][-1]))
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
# all_ids = set(range(model.lang_encoder.lm_head.out_features))
# bad_words_ids = list(all_ids - set(loc_token_ids))
# bad_words_ids = [[b] for b in bad_words_ids]
# min_loc_token_id = min(loc_token_ids)
# max_loc_token_id = max(loc_token_ids)
total = 0
correct = 0
ious = []
if "refcocog" in tsvfile:
dataset_name = "refcocog"
elif "refcocoplus" in tsvfile:
dataset_name = "refcocoplus"
else:
dataset_name = "refcoco"
with open(tsvfile, "r") as f:
lines = f.readlines()
pbar = tqdm(lines, disable=(rank != 0))
for ii, line in enumerate(pbar):
if ii % world_size != rank:
continue
total += 1
line = line.rstrip()
uniq_id, image_id, text, region_coord, image = line.split("\t")
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
# image = Image.open("/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal2/yolo.png").convert("RGB")
# image = Image.open("/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/temp/cat.png").convert("RGB")
# image = Image.open("/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/temp/262148000.png")
gt_box = np.array(list(map(float, region_coord.split(","))))
width = image.width
height = image.height
image = image.resize((224, 224))
gt_box = gt_box / np.array([width, height, width, height]) * 224
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#object#|>{text.rstrip('.').strip()}<|#endofobject#|><|#visual#|>"]
# prompt = [f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>the cat<|#visual#|>"]
# prompt = [f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>"]
# prompt = [f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>a man<|#visual#|> is doing a trick on a skateboard<|#visual#|>"]
encodings = tokenizer(
prompt,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
# attention_mask[input_ids == prebox_token_id] = 0
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
vision_x = batch_images.cuda()
lang_x = input_ids.cuda()
attention_mask = attention_mask.cuda()
model.debug_id = 0
with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
outputs = model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
labels=None,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=None,
add_box=False,
)
boxes = outputs["boxes"]
scores = outputs["scores"]
if len(scores) > 0:
box = boxes[scores.argmax()]
iou = get_iou(box, gt_box)
else:
iou = 0.0
# tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
tqdm.write(f"no output for: {uniq_id}, {image_id}, {text}")
if iou >= 0.5:
correct += 1
pbar.set_description(f"iou: {iou:.2f} score: {correct / total:.4f}")
# open_cv_image = np.array(image)
# # Convert RGB to BGR
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# for box, score in zip(boxes, scores):
# open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
# cv2.imwrite("output.jpg", open_cv_image)
# print(boxes)
# print(scores)
# exit()
with open(f"{dataset_name}_results_part{rank}_{id}.json", "w") as f:
f.write(json.dumps([total, correct]))
if world_size > 1:
torch.distributed.barrier()
if rank == 0:
total = 0
correct = 0
print(f"evaluate on rank {rank}. world size is {world_size}")
for rank_i in range(world_size):
[total_part, correct_part] = json.load(open(f"{dataset_name}_results_part{rank_i}_{id}.json"))
os.remove(f"{dataset_name}_results_part{rank_i}_{id}.json")
total += total_part
correct += correct_part
score = correct / total
print("score:", score)
with open(os.path.join("eval_results", f"{dataset_name}_{model.expr_name}_{model.step_num}_{int(time.time())}_{score}"), "w") as f:
pass
else:
score = 0.0
if world_size > 1:
torch.distributed.barrier()
return score
# def preprocess_visual_info(Text):
# text = Text.split(" ")
# for is_idx, t in enumerate(text):
# if t == "is":
# break
# the_idx = is_idx
# while text[the_idx] != "the":
# the_idx -= 1
# obj_A = " ".join(text[the_idx+1:is_idx])
# second_the_idx = len(text) - 1
# while text[second_the_idx] != "the":
# second_the_idx -= 1
# obj_B = " ".join(text[second_the_idx+1:])
# visual_obj_A = f"<|#object#|>{obj_A}<|#endofobject#|><|#visual#|><|#box#|><|#endofattr#|>"
# visual_obj_B = f"<|#object#|>{obj_B}<|#endofobject#|><|#visual#|><|#box#|><|#endofattr#|>"
# Text = Text.replace(obj_A, f"<|#object#|>{obj_A}<|#endofobject#|><|#visual#|><|#box#|><|#endofattr#|>")
# Text = Text.replace(obj_B, f"<|#object#|>{obj_B}<|#endofobject#|><|#visual#|><|#box#|><|#endofattr#|>")
# return Text, obj_A, obj_B, visual_obj_A, visual_obj_B
def preprocess_visual_info(Text):
text = Text.split(" ")
for is_idx, t in enumerate(text):
if t == "is":
break
the_idx = is_idx
while text[the_idx] != "the":
the_idx -= 1
obj_A = " ".join(text[the_idx+1:is_idx])
second_the_idx = len(text) - 1
while text[second_the_idx] != "the":
second_the_idx -= 1
obj_B = " ".join(text[second_the_idx+1:])
relation = " ".join(text[is_idx+1:second_the_idx])
visual_obj_A = f"<|#object#|>the {obj_A}<|#endofobject#|><|#visual#|><|#box#|><|#endofobject#|>"
visual_obj_B = f"<|#object#|><|#previsual#|><|#prebox#|><|#object#|>the {obj_B}<|#endofobject#|>"
Text = f"{visual_obj_A} is {relation} {visual_obj_B}"
return Text, obj_A, visual_obj_A, obj_B, visual_obj_B, relation
def get_bbox(visual_box_list, batch_images, prompt, model, tokenizer, media_token_id, prebox_token_id, debug=False, return_all=False):
assert isinstance(prompt, list) and len(prompt) == 1 and isinstance(prompt[0], str)
encodings = tokenizer(
prompt,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
vision_x = batch_images.cuda()
lang_x = input_ids.cuda()
attention_mask = attention_mask.cuda()
model.debug_id = 0
with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
outputs = model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
labels=None,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=visual_box_list,
add_box=visual_box_list is not None,
relations=None,
debug_mode=False,
)
boxes = outputs["boxes"]
scores = outputs["scores"]
if debug:
import pdb; pdb.set_trace()
if return_all:
return boxes, scores
if len(scores) == 0:
return None, None
else:
return boxes[scores.argmax()], scores.max()
def evaluate_aro(
model,
tokenizer,
image_processor,
batch_size,
tsvfile,
max_generation_length=20,
num_beams=3,
length_penalty=-2.0,
device=-1,
vis_embed_size=None,
rank=0,
world_size=1,
id=0,
add_visual=True,
add_relation=False,
subset=False,
choose_left_right=True,
):
both_failed_ids = json.load(open("both_failed_ids.json"))
os.makedirs(f"visualization/aro_results_{id}", exist_ok=True)
# from groundingdino.demo.caption_grounder import caption_grounder
# generator = caption_grounder(
# config_file="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
# checkpoint_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/GroundingDINO/checkpoints/groundingdino_swint_ogc.pth",
# cpu_only=False,
# box_threshold=0.1, text_threshold=0.1,
# )
dataset_name = "aro"
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
model.eval().cuda()
total = 0
correct = 0
from open_flamingo.eval.dataset_zoo import VG_Relation, VG_Attribution
vgr_dataset = VG_Relation(image_preprocess=None, download=True, root_dir="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/vision-language-models-are-bows/data")
with open("/gpfs/u/home/LMCG/LMCGljnn/scratch/code/unilm/kosmos-2/labels.json") as f:
all_labels = json.load(f)
label_ids = tokenizer(all_labels).input_ids
label_ids = sorted(list(set([x[0] for x in label_ids])))
if subset:
subset_idx = json.load(open("aro_subset.json"))
pbar = tqdm(subset_idx, disable=(rank != 0))
else:
pbar = tqdm(vgr_dataset, disable=(rank != 0))
for ii, sample in enumerate(pbar):
if subset:
ORI_IDX = int(sample)
sample = vgr_dataset[sample]
# if ORI_IDX != 19036:
# continue
if ii % world_size != rank:
continue
# not_left_right = ("near" in sample["caption_options"][0] or "next to" in sample["caption_options"][0] or "in front of" in sample["caption_options"][0] or "behind" in sample["caption_options"][0]) or ("left" not in sample["caption_options"][0] and "right" not in sample["caption_options"][0])
# if (choose_left_right and not_left_right) or (not choose_left_right and not not_left_right):
# if rank == 0:
# tqdm.write(f"SKIP: {sample['caption_options'][1]}")
# continue
total += 1
# image = sample["image_options"][0]
image = Image.open("/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal2/man_on_hydrant.png").convert("RGB")
image = image.resize((224, 224))
# text = sample["caption_options"][1] # 1 is true caption
text = "the man is sitting on the fire hydrant"
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
text, obj_A, visual_obj_A, obj_B, visual_obj_B, relation = preprocess_visual_info(text)
first_text = f"<|#object#|>the {obj_A}<|#endofobject#|><|#visual#|>"
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{first_text}"]
first_box, first_score = get_bbox(None, batch_images, prompt, model, tokenizer, media_token_id, prebox_token_id, return_all=False)
# use grounding DINO to get the first bbox
# caption = f"{obj_A}"
# with torch.no_grad():
# logits, boxes = generator.ground_caption_raw(image_pil=image, caption=caption)
# boxes_filt, pred_phrases = generator.postprocess(logits, boxes, generator.ground_model, caption, generator.text_threshold, generator.box_threshold, with_logits=True)
# objects = {}
# for box, phrase in zip(boxes_filt, pred_phrases):
# obj, score = phrase
# obj = obj[0]
# if obj not in objects:
# objects[obj] = (score, box)
# if objects[obj][0] < score:
# objects[obj] = (score, box)
# try:
# first_box = objects[obj_A][1].clone()
# first_box[:2] -= first_box[2:] / 2
# first_box[2:] += first_box[:2]
# first_box = first_box.clamp(0, 0.99) * 224.0
# first_box = first_box.numpy()
# first_score = objects[obj_A][0]
# except:
# first_box = None
if first_box is None:
text_A = "the " + obj_A
added_bbox_list = None
else:
text_A = visual_obj_A
added_bbox_list = [torch.tensor(first_box).unsqueeze(0).cuda() / 224]
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{text_A} is {relation}<|#object#|><|#previsual#|>"]
pre_boxes, pre_scores = get_bbox(added_bbox_list, batch_images, prompt, model, tokenizer, media_token_id,
prebox_token_id, return_all=True)
# open_cv_image = np.array(image)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# for box, score in zip(pre_box, pre_score):
# print(box, score)
# if score > 0.1:
# open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (0, 255, 0), 2)
# cv2.imwrite(f"test1.jpg", open_cv_image)
# print(sample["caption_options"][idx])
# exit()
if pre_boxes is None:
pre_boxes = [np.array([0.0, 0.0, 223.0, 223.0])]
pre_scores = [1.0]
rank_list = []
# pre_boxes = [pre_boxes[0]]
# pre_scores = [pre_scores[0]]
for pre_box, pre_score in zip(pre_boxes, pre_scores):
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{text_A} is {relation}<|#object#|><|#previsual#|><|#prebox#|><|#object#|> the {obj_B}<|#endofobject#|>"]
encodings = tokenizer(
prompt,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=512,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
vision_x = batch_images.cuda()
lang_x = input_ids.cuda()
attention_mask = attention_mask.cuda()
labels = lang_x.clone()
answer_start_idx = (labels == tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]).nonzero()[-1][1] + 1
# pre_box = None
labels[0, :answer_start_idx] = -100
# # labels[labels == endofobject_token_id] = -100
# labels[:, 0] = -100
# labels[labels == visual_token_id] = -100
# labels[labels == box_token_id] = -100
# labels[labels == previsual_token_id] = -100
# labels[labels == prebox_token_id] = -100
# labels[labels == endofattr_token_id] = -100
# labels[labels == tokenizer.pad_token_id] = -100
# labels[labels == media_token_id] = -100
# labels[labels == endofmedia_token_id] = -100
answer_ids = tokenizer(f" {obj_B}", add_special_tokens=False)["input_ids"]
labels[input_ids == visual_token_id] = -100
labels[input_ids == box_token_id] = -100
labels[input_ids == endofattr_token_id] = -100
labels[input_ids == previsual_token_id] = -100
labels[input_ids == prebox_token_id] = -100
labels[torch.roll(input_ids == prebox_token_id, 1)] = -100
labels[torch.roll(input_ids == box_token_id, 1)] = -100
labels[:, 0] = -100
labels[input_ids == tokenizer.pad_token_id] = -100
labels[input_ids == media_token_id] = -100
labels[input_ids == endofmedia_token_id] = -100
added_bbox_list = None
if add_visual:
added_bbox_list = []
if first_box is not None:
added_bbox_list.append(torch.tensor(first_box).unsqueeze(0).cuda().float() / 224)
if pre_box is not None:
added_bbox_list.append(torch.tensor(pre_box).unsqueeze(0).cuda().float() / 224)
if added_bbox_list is not None and len(added_bbox_list) == 0:
added_bbox_list = None
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
outputs = model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
labels=labels,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list,
add_box=added_bbox_list is not None,
relations=None,
)
logits = outputs["logits"][0, answer_start_idx:]
# _rank = logits[0][label_ids].sort(descending=True).indices.tolist().index(label_ids.index(answer_ids[0]))
_rank = logits[0].sort(descending=True).indices.tolist().index(answer_ids[0])
print(tokenizer.decode(logits[0].sort(descending=True).indices.tolist()[:10]))
print(tokenizer.decode(logits[1].sort(descending=True).indices.tolist()[:10]))
rank_list.append(_rank)
# open_cv_image = np.array(image)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# if first_box is not None:
# open_cv_image = cv2.rectangle(open_cv_image, first_box[:2].astype(int), first_box[2:].astype(int), (255, 0, 0), 2)
# if pre_box is not None:
# open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), 2)
# font = cv2.FONT_HERSHEY_SIMPLEX
# org = [10, 20]
# fontScale = 0.5
# color = (0, 0, 0)
# thickness = 1
# open_cv_image = cv2.resize(open_cv_image, (512, 512))
# put_text = sample["caption_options"][1]
# open_cv_image = cv2.putText(open_cv_image, put_text, org, font, fontScale, color, thickness, cv2.LINE_AA)
# org[1] += 20
# put_text = "top10 in green box"
# open_cv_image = cv2.putText(open_cv_image, put_text, org, font, fontScale, color, thickness, cv2.LINE_AA)
# fontScale = 1.0
# thickness = 2
# for ind in logits_list[i][0].sort(descending=True).indices[:10]:
# org[1] += 20
# put_text = f"{tokenizer.decode(ind)}"
# open_cv_image = cv2.putText(open_cv_image, put_text, org, font, fontScale, color, thickness, cv2.LINE_AA)
# tqdm.write(f"{tokenizer.decode(logits_list[i][0].sort(descending=True).indices[:10])}")
# tqdm.write(f"{rank_list}")
final_rank = min(rank_list)
if final_rank < 10:
correct += 1
TYPE = "CORRECT"
# if ii in both_failed_ids:
# tqdm.write(f"case find->{sample['caption_options'][1]}")
# image.save(f"case_study/{ii}_{rank_list}_{sample['caption_options'][1]}.jpg")
if rank == 0:
tqdm.write(f"correct: {final_rank} " + prompt[0].replace(tokenizer.pad_token, ""))
else:
TYPE = "WRONG"
if rank == 0:
tqdm.write(f"wrong: {final_rank} " + prompt[0].replace(tokenizer.pad_token, ""))
# cv2.imwrite(f"visualization/aro_results_{id}/{TYPE}_{ORI_IDX}.jpg", open_cv_image)
pbar.set_description(f"score: {correct / total:.4f} | {final_rank}")
with open(f"{dataset_name}_results_part{rank}_{id}.json", "w") as f:
f.write(json.dumps([total, correct]))
if world_size > 1:
torch.distributed.barrier()
if rank == 0:
total = 0
correct = 0
print(f"evaluate on rank {rank}. world size is {world_size}")
for rank_i in range(world_size):
[total_part, correct_part] = json.load(open(f"{dataset_name}_results_part{rank_i}_{id}.json"))
os.remove(f"{dataset_name}_results_part{rank_i}_{id}.json")
total += total_part
correct += correct_part
score = correct / total
print("score:", score, "total:", total)
with open(os.path.join("eval_results", f"{dataset_name}_{model.expr_name}_{model.step_num}_{int(time.time())}_{score}"), "w") as f:
pass
else:
score = 0.0
if world_size > 1:
torch.distributed.barrier()
return score
def evaluate_pisc(
model,
tokenizer,
image_processor,
batch_size,
tsvfile,
max_generation_length=20,
num_beams=3,
length_penalty=-2.0,
device=-1,
vis_embed_size=None,
rank=0,
world_size=1,
id=0,
add_visual=True,
):
from open_flamingo.train.instruction_template import PISC_TEMPLATES
dataset_name = "pisc"
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
model.train().cuda()
dataset = wds.WebDataset("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/instruct/eval/pisc/000000.tar").decode().to_tuple("image_path.txt", "dataset.txt", "data.pyd")
pbar = tqdm(dataset, disable=(rank != 0))
rel_id_to_type = ["friends", "family", "couple", "professional", "commercial", "no relation"]
rel_type_to_id = {x: i for i, x in enumerate(rel_id_to_type)}
gt = []
pred_scores = []
for III, sample in enumerate(pbar):
if III % world_size != rank:
continue
image_path, dataset, data = sample
image = Image.open(image_path)
size = image_processor.transforms[0].size
image = image.resize((size, size))
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
boxA = data[0]
boxB = data[1]
gt_relation = data[2]
losses = []
for i_rel, option_rel in enumerate(rel_id_to_type):
text = PISC_TEMPLATES[0].format(relation=option_rel)
added_bbox = [
torch.tensor([boxA]).cuda(),
torch.tensor([boxB]).cuda(),
]
caption = f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{text}{tokenizer.eos_token}"
encodings = tokenizer(
caption,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
vision_x = batch_images.cuda()
lang_x = input_ids.cuda()
attention_mask = attention_mask.cuda()
labels = lang_x.clone()
labels[labels == tokenizer.pad_token_id] = -100
if add_visual:
# endofattr_next_token_index = list((labels == endofattr_token_id).nonzero(as_tuple=True))
# endofattr_next_token_index[1] += 1
# endofattr_next_token_id = labels[endofattr_next_token_index]
# </obj><visual><box></attr>NEXT_WORD
# </obj> predict NEXT_WORD
# <visual><box></attr> predict nothing
labels[labels == visual_token_id] = -100
labels[labels == box_token_id] = -100
labels[labels == endofattr_token_id] = -100
# labels[endofattr_next_token_index] = -100
labels[:, 0] = -100
answer_token_id = tokenizer(" Answer").input_ids[0]
answer_token_loc = (input_ids == answer_token_id).nonzero()
for batch_idx, idx in answer_token_loc:
labels[batch_idx][:idx+2] = -100
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
outputs = model(
vision_x=vision_x,
lang_x=lang_x,
attention_mask=attention_mask,
labels=labels,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox,
add_box=added_bbox is not None,
)
loss_total = outputs.loss.reshape(labels.shape[0], -1)
loss = loss_total.sum() / (loss_total != 0).sum()
losses.append(loss.item())
pred_scores.append(np.exp(-np.array(losses)) / np.exp(-np.array(losses)).sum())
gt.append(rel_type_to_id[gt_relation])
gt = np.array(gt)
pred_scores = np.array(pred_scores)
pred = pred_scores.argmax(1)
print("total num:", len(gt))
recalls = recall_score(y_true=gt, y_pred=pred, average=None, labels=[0,1,2,3,4,5])
print("recalls:", recalls)
with open(f"{dataset_name}_results_part{rank}_{id}.json", "w") as f:
f.write(json.dumps([gt.tolist(), pred.tolist()]))
if world_size > 1:
torch.distributed.barrier()
if rank == 0:
gt = []
pred = []
print(f"evaluate on rank {rank}. world size is {world_size}")
for rank_i in range(world_size):
[gt_part, pred_part] = json.load(open(f"{dataset_name}_results_part{rank_i}_{id}.json"))
os.remove(f"{dataset_name}_results_part{rank_i}_{id}.json")
gt.extend(gt_part)
pred.extend(pred_part)
print("total num:", len(gt))
recalls = recall_score(y_true=gt, y_pred=pred, average=None, labels=[0,1,2,3,4,5])
print("recalls:", recalls)
with open(os.path.join("eval_results", f"{dataset_name}_{model.expr_name}_{model.step_num}_{int(time.time())}"), "w") as f:
f.write(f"{gt}\n")
f.write(f"{pred}\n")
f.write(f"{recalls}\n")
score = 0.0
if world_size > 1:
torch.distributed.barrier()
return score
if __name__ == "__main__":
main()