Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Pre-training/Fine-tuning ViT for image classification . | |
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | |
https://huggingface.co/models?filter=vit | |
""" | |
import logging | |
import os | |
import sys | |
import time | |
from dataclasses import asdict, dataclass, field | |
from enum import Enum | |
from pathlib import Path | |
from typing import Callable, Optional | |
import jax | |
import jax.numpy as jnp | |
import optax | |
# for dataset and preprocessing | |
import torch | |
import torchvision | |
import torchvision.transforms as transforms | |
from flax import jax_utils | |
from flax.jax_utils import pad_shard_unpad, unreplicate | |
from flax.training import train_state | |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key | |
from huggingface_hub import Repository, create_repo | |
from tqdm import tqdm | |
import transformers | |
from transformers import ( | |
CONFIG_MAPPING, | |
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
AutoConfig, | |
FlaxAutoModelForImageClassification, | |
HfArgumentParser, | |
is_tensorboard_available, | |
set_seed, | |
) | |
from transformers.utils import get_full_repo_name, send_example_telemetry | |
logger = logging.getLogger(__name__) | |
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
class TrainingArguments: | |
output_dir: str = field( | |
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, | |
) | |
overwrite_output_dir: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Overwrite the content of the output directory. " | |
"Use this to continue training if output_dir points to a checkpoint directory." | |
) | |
}, | |
) | |
do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) | |
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) | |
per_device_train_batch_size: int = field( | |
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} | |
) | |
per_device_eval_batch_size: int = field( | |
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} | |
) | |
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) | |
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) | |
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) | |
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) | |
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) | |
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) | |
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) | |
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) | |
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) | |
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) | |
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) | |
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) | |
push_to_hub: bool = field( | |
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} | |
) | |
hub_model_id: str = field( | |
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} | |
) | |
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) | |
def __post_init__(self): | |
if self.output_dir is not None: | |
self.output_dir = os.path.expanduser(self.output_dir) | |
def to_dict(self): | |
""" | |
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates | |
the token values by removing their value. | |
""" | |
d = asdict(self) | |
for k, v in d.items(): | |
if isinstance(v, Enum): | |
d[k] = v.value | |
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): | |
d[k] = [x.value for x in v] | |
if k.endswith("_token"): | |
d[k] = f"<{k.upper()}>" | |
return d | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." | |
) | |
}, | |
) | |
model_type: Optional[str] = field( | |
default=None, | |
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
dtype: Optional[str] = field( | |
default="float32", | |
metadata={ | |
"help": ( | |
"Floating-point format in which the model weights should be initialized and trained. Choose one of" | |
" `[float32, float16, bfloat16]`." | |
) | |
}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
train_dir: str = field( | |
metadata={"help": "Path to the root training directory which contains one subdirectory per class."} | |
) | |
validation_dir: str = field( | |
metadata={"help": "Path to the root validation directory which contains one subdirectory per class."}, | |
) | |
image_size: Optional[int] = field(default=224, metadata={"help": " The size (resolution) of each image."}) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
class TrainState(train_state.TrainState): | |
dropout_rng: jnp.ndarray | |
def replicate(self): | |
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) | |
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): | |
summary_writer.scalar("train_time", train_time, step) | |
train_metrics = get_metrics(train_metrics) | |
for key, vals in train_metrics.items(): | |
tag = f"train_{key}" | |
for i, val in enumerate(vals): | |
summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
for metric_name, value in eval_metrics.items(): | |
summary_writer.scalar(f"eval_{metric_name}", value, step) | |
def create_learning_rate_fn( | |
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float | |
) -> Callable[[int], jnp.array]: | |
"""Returns a linear warmup, linear_decay learning rate function.""" | |
steps_per_epoch = train_ds_size // train_batch_size | |
num_train_steps = steps_per_epoch * num_train_epochs | |
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
decay_fn = optax.linear_schedule( | |
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
) | |
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
return schedule_fn | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_image_classification", model_args, data_args, framework="flax") | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
"Use --overwrite_output_dir to overcome." | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
if jax.process_index() == 0: | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# set seed for random transforms and torch dataloaders | |
set_seed(training_args.seed) | |
# Handle the repository creation | |
if training_args.push_to_hub: | |
if training_args.hub_model_id is None: | |
repo_name = get_full_repo_name( | |
Path(training_args.output_dir).absolute().name, token=training_args.hub_token | |
) | |
else: | |
repo_name = training_args.hub_model_id | |
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) | |
repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) | |
# Initialize datasets and pre-processing transforms | |
# We use torchvision here for faster pre-processing | |
# Note that here we are using some default pre-processing, for maximum accuray | |
# one should tune this part and carefully select what transformations to use. | |
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
train_dataset = torchvision.datasets.ImageFolder( | |
data_args.train_dir, | |
transforms.Compose( | |
[ | |
transforms.RandomResizedCrop(data_args.image_size), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
normalize, | |
] | |
), | |
) | |
eval_dataset = torchvision.datasets.ImageFolder( | |
data_args.validation_dir, | |
transforms.Compose( | |
[ | |
transforms.Resize(data_args.image_size), | |
transforms.CenterCrop(data_args.image_size), | |
transforms.ToTensor(), | |
normalize, | |
] | |
), | |
) | |
# Load pretrained model and tokenizer | |
if model_args.config_name: | |
config = AutoConfig.from_pretrained( | |
model_args.config_name, | |
num_labels=len(train_dataset.classes), | |
image_size=data_args.image_size, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
elif model_args.model_name_or_path: | |
config = AutoConfig.from_pretrained( | |
model_args.model_name_or_path, | |
num_labels=len(train_dataset.classes), | |
image_size=data_args.image_size, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
config = CONFIG_MAPPING[model_args.model_type]() | |
logger.warning("You are instantiating a new config instance from scratch.") | |
if model_args.model_name_or_path: | |
model = FlaxAutoModelForImageClassification.from_pretrained( | |
model_args.model_name_or_path, | |
config=config, | |
seed=training_args.seed, | |
dtype=getattr(jnp, model_args.dtype), | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
model = FlaxAutoModelForImageClassification.from_config( | |
config, | |
seed=training_args.seed, | |
dtype=getattr(jnp, model_args.dtype), | |
) | |
# Store some constant | |
num_epochs = int(training_args.num_train_epochs) | |
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | |
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) | |
eval_batch_size = per_device_eval_batch_size * jax.device_count() | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
total_train_steps = steps_per_epoch * num_epochs | |
def collate_fn(examples): | |
pixel_values = torch.stack([example[0] for example in examples]) | |
labels = torch.tensor([example[1] for example in examples]) | |
batch = {"pixel_values": pixel_values, "labels": labels} | |
batch = {k: v.numpy() for k, v in batch.items()} | |
return batch | |
# Create data loaders | |
train_loader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_size=train_batch_size, | |
shuffle=True, | |
num_workers=data_args.preprocessing_num_workers, | |
persistent_workers=True, | |
drop_last=True, | |
collate_fn=collate_fn, | |
) | |
eval_loader = torch.utils.data.DataLoader( | |
eval_dataset, | |
batch_size=eval_batch_size, | |
shuffle=False, | |
num_workers=data_args.preprocessing_num_workers, | |
persistent_workers=True, | |
drop_last=False, | |
collate_fn=collate_fn, | |
) | |
# Enable tensorboard only on the master node | |
has_tensorboard = is_tensorboard_available() | |
if has_tensorboard and jax.process_index() == 0: | |
try: | |
from flax.metrics.tensorboard import SummaryWriter | |
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | |
except ImportError as ie: | |
has_tensorboard = False | |
logger.warning( | |
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
) | |
else: | |
logger.warning( | |
"Unable to display metrics through TensorBoard because the package is not installed: " | |
"Please run pip install tensorboard to enable." | |
) | |
# Initialize our training | |
rng = jax.random.PRNGKey(training_args.seed) | |
rng, dropout_rng = jax.random.split(rng) | |
# Create learning rate schedule | |
linear_decay_lr_schedule_fn = create_learning_rate_fn( | |
len(train_dataset), | |
train_batch_size, | |
training_args.num_train_epochs, | |
training_args.warmup_steps, | |
training_args.learning_rate, | |
) | |
# create adam optimizer | |
adamw = optax.adamw( | |
learning_rate=linear_decay_lr_schedule_fn, | |
b1=training_args.adam_beta1, | |
b2=training_args.adam_beta2, | |
eps=training_args.adam_epsilon, | |
weight_decay=training_args.weight_decay, | |
) | |
# Setup train state | |
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) | |
def loss_fn(logits, labels): | |
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) | |
return loss.mean() | |
# Define gradient update step fn | |
def train_step(state, batch): | |
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) | |
def compute_loss(params): | |
labels = batch.pop("labels") | |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
loss = loss_fn(logits, labels) | |
return loss | |
grad_fn = jax.value_and_grad(compute_loss) | |
loss, grad = grad_fn(state.params) | |
grad = jax.lax.pmean(grad, "batch") | |
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) | |
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return new_state, metrics | |
# Define eval fn | |
def eval_step(params, batch): | |
labels = batch.pop("labels") | |
logits = model(**batch, params=params, train=False)[0] | |
loss = loss_fn(logits, labels) | |
# summarize metrics | |
accuracy = (jnp.argmax(logits, axis=-1) == labels).mean() | |
metrics = {"loss": loss, "accuracy": accuracy} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return metrics | |
# Create parallel version of the train and eval step | |
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | |
p_eval_step = jax.pmap(eval_step, "batch") | |
# Replicate the train state on each device | |
state = state.replicate() | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {num_epochs}") | |
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") | |
logger.info(f" Total optimization steps = {total_train_steps}") | |
train_time = 0 | |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
for epoch in epochs: | |
# ======================== Training ================================ | |
train_start = time.time() | |
# Create sampling rng | |
rng, input_rng = jax.random.split(rng) | |
train_metrics = [] | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) | |
# train | |
for batch in train_loader: | |
batch = shard(batch) | |
state, train_metric = p_train_step(state, batch) | |
train_metrics.append(train_metric) | |
train_step_progress_bar.update(1) | |
train_time += time.time() - train_start | |
train_metric = unreplicate(train_metric) | |
train_step_progress_bar.close() | |
epochs.write( | |
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:" | |
f" {train_metric['learning_rate']})" | |
) | |
# ======================== Evaluating ============================== | |
eval_metrics = [] | |
eval_steps = len(eval_dataset) // eval_batch_size | |
eval_step_progress_bar = tqdm(total=eval_steps, desc="Evaluating...", position=2, leave=False) | |
for batch in eval_loader: | |
# Model forward | |
metrics = pad_shard_unpad(p_eval_step, static_return=True)( | |
state.params, batch, min_device_batch=per_device_eval_batch_size | |
) | |
eval_metrics.append(metrics) | |
eval_step_progress_bar.update(1) | |
# normalize eval metrics | |
eval_metrics = get_metrics(eval_metrics) | |
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) | |
# Print metrics and update progress bar | |
eval_step_progress_bar.close() | |
desc = ( | |
f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {round(eval_metrics['loss'].item(), 4)} | " | |
f"Eval Accuracy: {round(eval_metrics['accuracy'].item(), 4)})" | |
) | |
epochs.write(desc) | |
epochs.desc = desc | |
# Save metrics | |
if has_tensorboard and jax.process_index() == 0: | |
cur_step = epoch * (len(train_dataset) // train_batch_size) | |
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) | |
# save checkpoint after each epoch and push checkpoint to the hub | |
if jax.process_index() == 0: | |
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) | |
model.save_pretrained(training_args.output_dir, params=params) | |
if training_args.push_to_hub: | |
repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False) | |
if __name__ == "__main__": | |
main() | |