Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
from typing import Optional | |
class TrainingArguments: | |
""" | |
Configuration for training model. | |
""" | |
model_ckpt: Optional[str] = field( | |
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be trained."} | |
) | |
save_dir: Optional[str] = field( | |
default="./", metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} | |
) | |
dataset_name_train: Optional[str] = field( | |
default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path of training dataset."} | |
) | |
dataset_name_valid: Optional[str] = field( | |
default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} | |
) | |
train_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for training."}) | |
valid_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for evaluation."}) | |
weight_decay: Optional[float] = field(default=0.1, metadata={"help": "Value of weight decay."}) | |
shuffle_buffer: Optional[int] = field( | |
default=10000, metadata={"help": "Size of buffer used to shuffle streaming dataset."} | |
) | |
learning_rate: Optional[float] = field(default=2e-4, metadata={"help": "Learning rate fo training."}) | |
lr_scheduler_type: Optional[str] = field(default="cosine", metadata={"help": "Learning rate."}) | |
num_warmup_steps: Optional[int] = field( | |
default=750, metadata={"help": "Number of warmup steps in the learning rate schedule."} | |
) | |
gradient_accumulation_steps: Optional[int] = field( | |
default=16, metadata={"help": "Number of gradient accumulation steps."} | |
) | |
gradient_checkpointing: Optional[bool] = field( | |
default=True, metadata={"help": "Use gradient checkpointing to reduce memory footprint."} | |
) | |
max_train_steps: Optional[int] = field(default=50000, metadata={"help": "Maximum number of training steps."}) | |
max_eval_steps: Optional[int] = field( | |
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} | |
) | |
seq_length: Optional[int] = field(default=1024, metadata={"help": "Sequence lengths used for training."}) | |
seed: Optional[int] = field(default=1, metadata={"help": "Training seed."}) | |
save_checkpoint_steps: Optional[int] = field( | |
default=1024, | |
metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."}, | |
) | |
resume_from_checkpoint: Optional[str] = field( | |
default=None, metadata={"help": "States path if the training should continue from a checkpoint folder."} | |
) | |
tokenized: Optional[bool] = field(default=False, metadata={"help": "If True the data is pretokenized."}) | |
class EvaluationArguments: | |
""" | |
Configuration for evaluating model. | |
""" | |
model_ckpt: Optional[str] = field( | |
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} | |
) | |
dataset_name: Optional[str] = field( | |
default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} | |
) | |
batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size used for evaluation."}) | |
max_eval_steps: Optional[int] = field( | |
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} | |
) | |
seq_length: Optional[int] = field(default=1024, metadata={"help": "Length of sequences to be evaluated."}) | |
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."}) | |
class HumanEvalArguments: | |
""" | |
Configuration for running evaluation on HumanEval dataset. | |
""" | |
model_ckpt: Optional[str] = field( | |
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} | |
) | |
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."}) | |
num_tasks: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."}, | |
) | |
do_sample: Optional[bool] = field( | |
default=True, metadata={"help": "Sample from the language model's output distribution."} | |
) | |
temperature: Optional[float] = field(default=0.2, metadata={"help": "Sampling temperature used for generation."}) | |
max_new_tokens: Optional[int] = field(default=256, metadata={"help": "Maximum number of newly generated tokens."}) | |
top_k: Optional[int] = field(default=0, metadata={"help": "Top-k parameter used for generation."}) | |
top_p: Optional[float] = field(default=0.95, metadata={"help": "Top-p parameter used for nucleus sampling."}) | |
batch_size: Optional[int] = field(default=10, metadata={"help": "Number of generations to run in parallel."}) | |
n_samples: Optional[int] = field( | |
default=200, metadata={"help": "Number of completions to generate for each sample."} | |
) | |
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."}) | |
output_file: Optional[str] = field( | |
default="eval_results.json", metadata={"help": "Random seed used for evaluation."} | |
) | |
HF_ALLOW_CODE_EVAL: Optional[str] = field( | |
default="0", metadata={"help": "Allow `code_eval` to execute Python code on machine"} | |
) | |
device_int: Optional[int] = field( | |
default=-1, | |
metadata={ | |
"help": ( | |
"Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" | |
" number corresponds to which GPU device id to run on." | |
) | |
}, | |
) | |
class PreprocessingArguments: | |
""" | |
Configuration for preprocessing data. | |
""" | |
num_workers: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." | |
}, | |
) | |
dataset_name: Optional[str] = field( | |
default="transformersbook/codeparrot", metadata={"help": "Folder or name of dataset to process."} | |
) | |
output_dir: Optional[str] = field( | |
default="codeparrot-clean", metadata={"help": "Folder to save processed processed dataset."} | |
) | |
samples_per_file: Optional[int] = field( | |
default=100_000, metadata={"help": "Number of files to save per JSON output file."} | |
) | |
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."}) | |
line_max: Optional[float] = field( | |
default=1000, metadata={"help": "Maximum line length in file, otherwise file is filtered."} | |
) | |
line_mean: Optional[float] = field( | |
default=100, metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} | |
) | |
alpha_frac: Optional[float] = field( | |
default=0.25, metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} | |
) | |
min_token_ratio: Optional[float] = field( | |
default=1.5, metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} | |
) | |
filter_proba: Optional[float] = field( | |
default=0.7, metadata={"help": "Probability for filtering config, test and uncommon files."} | |
) | |
tokenizer: Optional[str] = field( | |
default="codeparrot/codeparrot", | |
metadata={"help": "Name or path to the tokenizer."}, | |
) | |
near_deduplication: Optional[bool] = field( | |
default=False, metadata={"help": "If True, near-duplicate samples are removed."} | |
) | |
jaccard_threshold: Optional[float] = field( | |
default=0.85, metadata={"help": "Jaccard threshold for near-duplicate samples."} | |
) | |
class TokenizerTrainingArguments: | |
""" | |
Configuration for tokenizer training. | |
""" | |
base_tokenizer: Optional[str] = field( | |
default="gpt2", metadata={"help": "Base tokenizer to build new tokenizer from."} | |
) | |
dataset_name: Optional[str] = field( | |
default="transformersbook/codeparrot-train", metadata={"help": "Dataset to train tokenizer on."} | |
) | |
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."}) | |
vocab_size: Optional[int] = field(default=200_000, metadata={"help": "Number of examples to train tokenizer on."}) | |
n_examples: Optional[int] = field( | |
default=32768, metadata={"help": "Number of examples to train the tokenizer on."} | |
) | |
tokenizer_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of new tokenizer."}) | |
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."}) | |
class PretokenizationArguments: | |
""" | |
Configuration for data pretokenization. | |
""" | |
tokenizer_dir: Optional[str] = field( | |
default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."} | |
) | |
dataset_name: Optional[str] = field( | |
default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path to the dataset to pretokenize."} | |
) | |
tokenized_data_repo: Optional[str] = field( | |
default="tokenized-codeparrot-train", metadata={"help": "Repo name of the pretokenized data."} | |
) | |
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."}) | |
class InitializationArguments: | |
""" | |
Configuration for initializing new model. | |
""" | |
config_name: Optional[str] = field( | |
default="gpt2-large", metadata={"help": "Configuration to use for model initialization."} | |
) | |
tokenizer_name: Optional[str] = field( | |
default="codeparrot/codeparrot", metadata={"help": "Tokenizer attached to model."} | |
) | |
model_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of the created model."}) | |
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."}) | |