Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for multiple choice. | |
""" | |
# You can also adapt this script on your own multiple choice task. Pointers for this are left as comments. | |
import json | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from itertools import chain | |
from pathlib import Path | |
from typing import Optional, Union | |
import datasets | |
import tensorflow as tf | |
from datasets import load_dataset | |
import transformers | |
from transformers import ( | |
CONFIG_NAME, | |
TF2_WEIGHTS_NAME, | |
AutoConfig, | |
AutoTokenizer, | |
DefaultDataCollator, | |
HfArgumentParser, | |
PushToHubCallback, | |
TFAutoModelForMultipleChoice, | |
TFTrainingArguments, | |
create_optimizer, | |
set_seed, | |
) | |
from transformers.tokenization_utils_base import PreTrainedTokenizerBase | |
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.28.0") | |
logger = logging.getLogger(__name__) | |
# region Helper classes and functions | |
class DataCollatorForMultipleChoice: | |
""" | |
Data collator that will dynamically pad the inputs for multiple choice received. | |
Args: | |
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): | |
The tokenizer used for encoding the data. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | |
among: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence | |
if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
pad_to_multiple_of (`int`, *optional*): | |
If set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | |
7.5 (Volta). | |
""" | |
tokenizer: PreTrainedTokenizerBase | |
padding: Union[bool, str, PaddingStrategy] = True | |
max_length: Optional[int] = None | |
pad_to_multiple_of: Optional[int] = None | |
def __call__(self, features): | |
label_name = "label" if "label" in features[0].keys() else "labels" | |
labels = [feature.pop(label_name) for feature in features] | |
batch_size = len(features) | |
num_choices = len(features[0]["input_ids"]) | |
flattened_features = [ | |
[{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features | |
] | |
flattened_features = list(chain(*flattened_features)) | |
batch = self.tokenizer.pad( | |
flattened_features, | |
padding=self.padding, | |
max_length=self.max_length, | |
pad_to_multiple_of=self.pad_to_multiple_of, | |
return_tensors="np", | |
) | |
# Un-flatten | |
batch = {k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items()} | |
# Add back labels | |
batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64) | |
return batch | |
# endregion | |
# region Arguments | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
max_seq_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. If passed, sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Whether to pad all samples to the maximum sentence length. " | |
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More " | |
"efficient on GPU but very bad for TPU." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
def __post_init__(self): | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
# endregion | |
def main(): | |
# region Argument parsing | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_swag", model_args, data_args, framework="tensorflow") | |
output_dir = Path(training_args.output_dir) | |
output_dir.mkdir(parents=True, exist_ok=True) | |
# endregion | |
# region Logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# endregion | |
# region Checkpoints | |
checkpoint = None | |
if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: | |
if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file(): | |
checkpoint = output_dir | |
logger.info( | |
f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" | |
" behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
else: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to continue regardless." | |
) | |
# endregion | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# region Load datasets | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
# 'text' is found. You can easily tweak this behavior (see below). | |
# In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
# download the dataset. | |
if data_args.train_file is not None or data_args.validation_file is not None: | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.train_file.split(".")[-1] | |
raw_datasets = load_dataset( | |
extension, | |
data_files=data_files, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
# Downloading and loading the swag dataset from the hub. | |
raw_datasets = load_dataset( | |
"swag", | |
"regular", | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# When using your own dataset or a different dataset from swag, you will probably need to change this. | |
ending_names = [f"ending{i}" for i in range(4)] | |
context_name = "sent1" | |
question_header_name = "sent2" | |
# endregion | |
# region Load model config and tokenizer | |
if checkpoint is not None: | |
config_path = training_args.output_dir | |
elif model_args.config_name: | |
config_path = model_args.config_name | |
else: | |
config_path = model_args.model_name_or_path | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
config_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_fast=model_args.use_fast_tokenizer, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# endregion | |
# region Dataset preprocessing | |
if data_args.max_seq_length is None: | |
max_seq_length = tokenizer.model_max_length | |
if max_seq_length > 1024: | |
logger.warning( | |
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " | |
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." | |
) | |
max_seq_length = 1024 | |
else: | |
if data_args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
) | |
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
def preprocess_function(examples): | |
first_sentences = [[context] * 4 for context in examples[context_name]] | |
question_headers = examples[question_header_name] | |
second_sentences = [ | |
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers) | |
] | |
# Flatten out | |
first_sentences = list(chain(*first_sentences)) | |
second_sentences = list(chain(*second_sentences)) | |
# Tokenize | |
tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True, max_length=max_seq_length) | |
# Un-flatten | |
data = {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()} | |
return data | |
if training_args.do_train: | |
if "train" not in raw_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = raw_datasets["train"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
with training_args.main_process_first(desc="train dataset map pre-processing"): | |
train_dataset = train_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if training_args.do_eval: | |
if "validation" not in raw_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = raw_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
eval_dataset = eval_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
load_from_cache_file=not data_args.overwrite_cache, | |
) | |
if data_args.pad_to_max_length: | |
data_collator = DefaultDataCollator(return_tensors="np") | |
else: | |
# custom class defined above, as HF has no data collator for multiple choice | |
data_collator = DataCollatorForMultipleChoice(tokenizer) | |
# endregion | |
with training_args.strategy.scope(): | |
# region Build model | |
if checkpoint is None: | |
model_path = model_args.model_name_or_path | |
else: | |
model_path = checkpoint | |
model = TFAutoModelForMultipleChoice.from_pretrained( | |
model_path, | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
num_replicas = training_args.strategy.num_replicas_in_sync | |
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas | |
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas | |
if training_args.do_train: | |
num_train_steps = (len(train_dataset) // total_train_batch_size) * int(training_args.num_train_epochs) | |
if training_args.warmup_steps > 0: | |
num_warmup_steps = training_args.warmup_steps | |
elif training_args.warmup_ratio > 0: | |
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
else: | |
num_warmup_steps = 0 | |
optimizer, lr_schedule = create_optimizer( | |
init_lr=training_args.learning_rate, | |
num_train_steps=num_train_steps, | |
num_warmup_steps=num_warmup_steps, | |
adam_beta1=training_args.adam_beta1, | |
adam_beta2=training_args.adam_beta2, | |
adam_epsilon=training_args.adam_epsilon, | |
weight_decay_rate=training_args.weight_decay, | |
adam_global_clipnorm=training_args.max_grad_norm, | |
) | |
else: | |
optimizer = None | |
model.compile(optimizer=optimizer, metrics=["accuracy"], jit_compile=training_args.xla) | |
# endregion | |
# region Preparing push_to_hub and model card | |
push_to_hub_model_id = training_args.push_to_hub_model_id | |
model_name = model_args.model_name_or_path.split("/")[-1] | |
if not push_to_hub_model_id: | |
push_to_hub_model_id = f"{model_name}-finetuned-multiplechoice" | |
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice"} | |
if training_args.push_to_hub: | |
callbacks = [ | |
PushToHubCallback( | |
output_dir=training_args.output_dir, | |
hub_model_id=push_to_hub_model_id, | |
hub_token=training_args.push_to_hub_token, | |
tokenizer=tokenizer, | |
**model_card_kwargs, | |
) | |
] | |
else: | |
callbacks = [] | |
# endregion | |
# region Training | |
eval_metrics = None | |
if training_args.do_train: | |
dataset_options = tf.data.Options() | |
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
# model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in | |
# training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also | |
# use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names | |
# yourself if you use this method, whereas they are automatically inferred from the model input names when | |
# using model.prepare_tf_dataset() | |
# For more info see the docs: | |
# https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset | |
# https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset | |
tf_train_dataset = model.prepare_tf_dataset( | |
train_dataset, | |
shuffle=True, | |
batch_size=total_train_batch_size, | |
collate_fn=data_collator, | |
).with_options(dataset_options) | |
if training_args.do_eval: | |
validation_data = model.prepare_tf_dataset( | |
eval_dataset, | |
shuffle=False, | |
batch_size=total_eval_batch_size, | |
collate_fn=data_collator, | |
drop_remainder=True, | |
).with_options(dataset_options) | |
else: | |
validation_data = None | |
history = model.fit( | |
tf_train_dataset, | |
validation_data=validation_data, | |
epochs=int(training_args.num_train_epochs), | |
callbacks=callbacks, | |
) | |
eval_metrics = {key: val[-1] for key, val in history.history.items()} | |
# endregion | |
# region Evaluation | |
if training_args.do_eval and not training_args.do_train: | |
dataset_options = tf.data.Options() | |
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF | |
# Do a standalone evaluation pass | |
tf_eval_dataset = model.prepare_tf_dataset( | |
eval_dataset, | |
shuffle=False, | |
batch_size=total_eval_batch_size, | |
collate_fn=data_collator, | |
drop_remainder=True, | |
).with_options(dataset_options) | |
eval_results = model.evaluate(tf_eval_dataset) | |
eval_metrics = {"val_loss": eval_results[0], "val_accuracy": eval_results[1]} | |
# endregion | |
if eval_metrics is not None and training_args.output_dir is not None: | |
output_eval_file = os.path.join(training_args.output_dir, "all_results.json") | |
with open(output_eval_file, "w") as writer: | |
writer.write(json.dumps(eval_metrics)) | |
# region Push to hub | |
if training_args.output_dir is not None and not training_args.push_to_hub: | |
# If we're not pushing to hub, at least save a local copy when we're done | |
model.save_pretrained(training_args.output_dir) | |
# endregion | |
if __name__ == "__main__": | |
main() | |