Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch BEiT model. """ | |
import inspect | |
import unittest | |
from datasets import load_dataset | |
from packaging import version | |
from transformers import BeitConfig | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import ( | |
MODEL_MAPPING, | |
BeitForImageClassification, | |
BeitForMaskedImageModeling, | |
BeitForSemanticSegmentation, | |
BeitModel, | |
) | |
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
import PIL | |
from PIL import Image | |
from transformers import BeitFeatureExtractor | |
class BeitModelTester: | |
def __init__( | |
self, | |
parent, | |
vocab_size=100, | |
batch_size=13, | |
image_size=30, | |
patch_size=2, | |
num_channels=3, | |
is_training=True, | |
use_labels=True, | |
hidden_size=32, | |
num_hidden_layers=4, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
type_sequence_label_size=10, | |
initializer_range=0.02, | |
num_labels=3, | |
scope=None, | |
out_indices=[0, 1, 2, 3], | |
): | |
self.parent = parent | |
self.vocab_size = 100 | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.scope = scope | |
self.out_indices = out_indices | |
self.num_labels = num_labels | |
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) | |
num_patches = (image_size // patch_size) ** 2 | |
self.seq_length = num_patches + 1 | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
pixel_labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) | |
config = self.get_config() | |
return config, pixel_values, labels, pixel_labels | |
def get_config(self): | |
return BeitConfig( | |
vocab_size=self.vocab_size, | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
out_indices=self.out_indices, | |
) | |
def create_and_check_model(self, config, pixel_values, labels, pixel_labels): | |
model = BeitModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels): | |
model = BeitForMaskedImageModeling(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size)) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): | |
config.num_labels = self.type_sequence_label_size | |
model = BeitForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
# test greyscale images | |
config.num_channels = 1 | |
model = BeitForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): | |
config.num_labels = self.num_labels | |
model = BeitForSemanticSegmentation(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) | |
) | |
result = model(pixel_values, labels=pixel_labels) | |
self.parent.assertEqual( | |
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels, pixel_labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = ( | |
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": BeitModel, | |
"image-classification": BeitForImageClassification, | |
"image-segmentation": BeitForSemanticSegmentation, | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = BeitModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_multi_gpu_data_parallel_forward(self): | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
def test_for_semantic_segmentation(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
for model_class in self.all_model_classes: | |
# we don't test BeitForMaskedImageModeling | |
if model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]: | |
continue | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_training_gradient_checkpointing(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.model_tester.is_training: | |
return | |
config.use_cache = False | |
config.return_dict = True | |
for model_class in self.all_model_classes: | |
# we don't test BeitForMaskedImageModeling | |
if ( | |
model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling] | |
or not model_class.supports_gradient_checkpointing | |
): | |
continue | |
model = model_class(config) | |
model.gradient_checkpointing_enable() | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
# we skip lambda parameters as these require special initial values | |
# determined by config.layer_scale_init_value | |
if "lambda" in name: | |
continue | |
if param.requires_grad: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
def test_model_from_pretrained(self): | |
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = BeitModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class BeitModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
return ( | |
BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None | |
) | |
def test_inference_masked_image_modeling_head(self): | |
model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(torch_device) | |
# prepare bool_masked_pos | |
bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos) | |
logits = outputs.logits | |
# verify the logits | |
expected_shape = torch.Size((1, 196, 8192)) | |
self.assertEqual(logits.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2)) | |
def test_inference_image_classification_head_imagenet_1k(self): | |
model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# verify the logits | |
expected_shape = torch.Size((1, 1000)) | |
self.assertEqual(logits.shape, expected_shape) | |
expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device) | |
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) | |
expected_class_idx = 281 | |
self.assertEqual(logits.argmax(-1).item(), expected_class_idx) | |
def test_inference_image_classification_head_imagenet_22k(self): | |
model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to( | |
torch_device | |
) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# verify the logits | |
expected_shape = torch.Size((1, 21841)) | |
self.assertEqual(logits.shape, expected_shape) | |
expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device) | |
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) | |
expected_class_idx = 2396 | |
self.assertEqual(logits.argmax(-1).item(), expected_class_idx) | |
def test_inference_semantic_segmentation(self): | |
model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") | |
model = model.to(torch_device) | |
feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False) | |
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") | |
image = Image.open(ds[0]["file"]) | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# verify the logits | |
expected_shape = torch.Size((1, 150, 160, 160)) | |
self.assertEqual(logits.shape, expected_shape) | |
is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0") | |
if is_pillow_less_than_9: | |
expected_slice = torch.tensor( | |
[ | |
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], | |
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], | |
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], | |
], | |
device=torch_device, | |
) | |
else: | |
expected_slice = torch.tensor( | |
[ | |
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], | |
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], | |
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], | |
], | |
device=torch_device, | |
) | |
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4)) | |
def test_post_processing_semantic_segmentation(self): | |
model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") | |
model = model.to(torch_device) | |
feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False) | |
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") | |
image = Image.open(ds[0]["file"]) | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
outputs.logits = outputs.logits.detach().cpu() | |
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)]) | |
expected_shape = torch.Size((500, 300)) | |
self.assertEqual(segmentation[0].shape, expected_shape) | |
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs) | |
expected_shape = torch.Size((160, 160)) | |
self.assertEqual(segmentation[0].shape, expected_shape) | |