Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch BioGPT model. """ | |
import math | |
import unittest | |
from transformers import BioGptConfig, is_torch_available | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import BioGptForCausalLM, BioGptForTokenClassification, BioGptModel, BioGptTokenizer | |
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST | |
class BioGptModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=False, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def get_config(self): | |
return BioGptConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = BioGptModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_causal_lm( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
model = BioGptForCausalLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_biogpt_model_attention_mask_past( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
model = BioGptModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# create attention mask | |
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
half_seq_length = self.seq_length // 2 | |
attn_mask[:, half_seq_length:] = 0 | |
# first forward pass | |
output, past = model(input_ids, attention_mask=attn_mask).to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) | |
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens | |
# append to next input_ids and attn_mask | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
attn_mask = torch.cat( | |
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], | |
dim=1, | |
) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_biogpt_model_past_large_inputs( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
model = BioGptModel(config=config).to(torch_device).eval() | |
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_forward_and_backwards( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False | |
): | |
model = BioGptForCausalLM(config) | |
model.to(torch_device) | |
if gradient_checkpointing: | |
model.gradient_checkpointing_enable() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
result.loss.backward() | |
def create_and_check_biogpt_weight_initialization(self, config, *args): | |
model = BioGptModel(config) | |
model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) | |
for key in model.state_dict().keys(): | |
if "c_proj" in key and "weight" in key: | |
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) | |
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) | |
def create_and_check_biogpt_for_token_classification( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
config.num_labels = self.num_labels | |
model = BioGptForTokenClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class BioGptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (BioGptModel, BioGptForCausalLM, BioGptForTokenClassification) if is_torch_available() else () | |
all_generative_model_classes = (BioGptForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": BioGptModel, | |
"text-generation": BioGptForCausalLM, | |
"token-classification": BioGptForTokenClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
def setUp(self): | |
self.model_tester = BioGptModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BioGptConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_various_embeddings(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
for type in ["absolute", "relative_key", "relative_key_query"]: | |
config_and_inputs[0].position_embedding_type = type | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_biogpt_model_att_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*config_and_inputs) | |
def test_biogpt_gradient_checkpointing(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) | |
def test_biogpt_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*config_and_inputs) | |
def test_biogpt_weight_initialization(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_biogpt_weight_initialization(*config_and_inputs) | |
def test_biogpt_token_classification_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_biogpt_for_token_classification(*config_and_inputs) | |
def test_batch_generation(self): | |
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") | |
model.to(torch_device) | |
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") | |
tokenizer.padding_side = "left" | |
# Define PAD Token = EOS Token = 50256 | |
tokenizer.pad_token = tokenizer.eos_token | |
model.config.pad_token_id = model.config.eos_token_id | |
# use different length sentences to test batching | |
sentences = [ | |
"Hello, my dog is a little", | |
"Today, I", | |
] | |
inputs = tokenizer(sentences, return_tensors="pt", padding=True) | |
input_ids = inputs["input_ids"].to(torch_device) | |
outputs = model.generate( | |
input_ids=input_ids, | |
attention_mask=inputs["attention_mask"].to(torch_device), | |
) | |
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) | |
output_non_padded = model.generate(input_ids=inputs_non_padded) | |
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() | |
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) | |
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) | |
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) | |
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) | |
expected_output_sentence = [ | |
"Hello, my dog is a little bit bigger than a little bit.", | |
"Today, I have a good idea of how to use the information", | |
] | |
self.assertListEqual(expected_output_sentence, batch_out_sentence) | |
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) | |
def test_model_from_pretrained(self): | |
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = BioGptModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class BioGptModelIntegrationTest(unittest.TestCase): | |
def test_inference_lm_head_model(self): | |
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") | |
input_ids = torch.tensor([[2, 4805, 9, 656, 21]]) | |
output = model(input_ids)[0] | |
vocab_size = 42384 | |
expected_shape = torch.Size((1, 5, vocab_size)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |
def test_biogpt_generation(self): | |
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") | |
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") | |
model.to(torch_device) | |
torch.manual_seed(0) | |
tokenized = tokenizer("COVID-19 is", return_tensors="pt").to(torch_device) | |
output_ids = model.generate( | |
**tokenized, | |
min_length=100, | |
max_length=1024, | |
num_beams=5, | |
early_stopping=True, | |
) | |
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
EXPECTED_OUTPUT_STR = ( | |
"COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" | |
" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" | |
" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," | |
" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" | |
" more than 800,000 deaths." | |
) | |
self.assertEqual(output_str, EXPECTED_OUTPUT_STR) | |