Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch BridgeTower model. """ | |
import tempfile | |
import unittest | |
import numpy as np | |
from transformers import BridgeTowerConfig, is_torch_available, is_vision_available | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
_config_zero_init, | |
floats_tensor, | |
ids_tensor, | |
random_attention_mask, | |
) | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
BridgeTowerForContrastiveLearning, | |
BridgeTowerForImageAndTextRetrieval, | |
BridgeTowerForMaskedLM, | |
BridgeTowerModel, | |
) | |
from transformers.models.bridgetower.modeling_bridgetower import BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST | |
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_10 | |
else: | |
is_torch_greater_or_equal_than_1_10 = False | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import BridgeTowerProcessor | |
class BridgeTowerModelTester: | |
def __init__( | |
self, | |
parent, | |
share_cross_modal_transformer_layers=True, | |
drop_rate=0.1, | |
head_hidden_scale=2, | |
hidden_act="gelu", | |
hidden_size=768, | |
initializer_factor=1, | |
is_encoder_decoder=False, | |
layer_norm_eps=1e-05, | |
share_link_tower_layers=False, | |
link_tower_type="add", | |
num_attention_heads=12, | |
num_hidden_layers=6, | |
tie_word_embeddings=False, | |
init_layernorm_from_vision_encoder=False, | |
output_hidden_states=False, | |
text_config=None, | |
vision_config=None, | |
image_size=288, | |
contrastive_hidden_size=512, | |
logit_scale_init_value=2.6592, | |
): | |
self.parent = parent | |
self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers | |
self.drop_rate = drop_rate | |
self.head_hidden_scale = head_hidden_scale | |
self.hidden_act = hidden_act | |
self.hidden_size = hidden_size | |
self.initializer_factor = initializer_factor | |
self.is_encoder_decoder = is_encoder_decoder | |
self.layer_norm_eps = layer_norm_eps | |
self.share_link_tower_layers = share_link_tower_layers | |
self.link_tower_type = link_tower_type | |
self.num_attention_heads = num_attention_heads | |
self.num_hidden_layers = num_hidden_layers | |
self.tie_word_embeddings = tie_word_embeddings | |
self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder | |
self.vocab_size = 99 | |
self.num_channels = 3 | |
self.seq_length = 4 | |
self.num_image_features = 325 | |
self.batch_size = 1 | |
self.image_size = image_size | |
self.is_training = False | |
self.expected_num_hidden_layers = 32 | |
self.output_hidden_states = output_hidden_states | |
self.contrastive_hidden_size = contrastive_hidden_size | |
self.logit_scale_init_value = logit_scale_init_value | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
pixel_mask = random_attention_mask([self.batch_size, self.image_size, self.image_size]) | |
config = self.get_config() | |
return (config, input_ids, attention_mask, pixel_values, pixel_mask) | |
def get_config(self): | |
return BridgeTowerConfig( | |
share_cross_modal_transformer_layers=self.share_cross_modal_transformer_layers, | |
drop_rate=self.drop_rate, | |
head_hidden_scale=self.head_hidden_scale, | |
hidden_act=self.hidden_act, | |
hidden_size=self.hidden_size, | |
initializer_factor=self.initializer_factor, | |
image_size=self.image_size, | |
is_encoder_decoder=self.is_encoder_decoder, | |
layer_norm_eps=self.layer_norm_eps, | |
share_link_tower_layers=self.share_link_tower_layers, | |
link_tower_type=self.link_tower_type, | |
num_attention_heads=self.num_attention_heads, | |
num_hidden_layers=self.num_hidden_layers, | |
tie_word_embeddings=self.tie_word_embeddings, | |
init_layernorm_from_vision_encoder=self.init_layernorm_from_vision_encoder, | |
num_channels=self.num_channels, | |
output_hidden_states=self.output_hidden_states, | |
contrastive_hidden_size=self.contrastive_hidden_size, | |
logit_scale_init_value=self.logit_scale_init_value, | |
) | |
def create_and_check_model( | |
self, | |
config, | |
input_ids, | |
attention_mask, | |
pixel_values, | |
pixel_mask, | |
): | |
model = BridgeTowerModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) | |
result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) | |
self.parent.assertEqual(result["text_features"].shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual( | |
result["image_features"].shape, (self.batch_size, self.num_image_features, self.hidden_size) | |
) | |
self.parent.assertEqual(result["pooler_output"].shape, (self.batch_size, 2 * self.hidden_size)) | |
def create_and_check_for_image_and_text_retrieval( | |
self, | |
config, | |
input_ids, | |
attention_mask, | |
pixel_values, | |
pixel_mask, | |
): | |
bridgetower_itm_output_last_dimension = 2 | |
model = BridgeTowerForImageAndTextRetrieval(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) | |
result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, bridgetower_itm_output_last_dimension)) | |
def create_and_check_for_masked_language_modeling( | |
self, | |
config, | |
input_ids, | |
attention_mask, | |
pixel_values, | |
pixel_mask, | |
): | |
model = BridgeTowerForMaskedLM(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values, pixel_mask=pixel_mask) | |
result = model(input_ids, attention_mask=attention_mask, pixel_values=pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, 50265)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
(config, input_ids, attention_mask, pixel_values, pixel_mask) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
"pixel_mask": pixel_mask, | |
} | |
return config, inputs_dict | |
class BridgeTowerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
BridgeTowerModel, | |
BridgeTowerForImageAndTextRetrieval, | |
BridgeTowerForMaskedLM, | |
BridgeTowerForContrastiveLearning, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = {"feature-extraction": BridgeTowerModel} if is_torch_available() else {} | |
is_training = False | |
test_headmasking = False | |
test_pruning = False | |
test_torchscript = False | |
test_resize_embeddings = False | |
has_attentions = False | |
# function to extract meaningful tensor from output per different model_class | |
def extract_output(self, outputs, model_class): | |
return outputs["pooler_output"] if model_class == "BridgeTowerModel" else outputs["logits"] | |
def setUp(self): | |
self.model_tester = BridgeTowerModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BridgeTowerConfig, hidden_size=37, vocab_size=99) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_image_and_text_retrieval(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_and_text_retrieval(*config_and_inputs) | |
def test_for_masked_language_modeling(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_language_modeling(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = BridgeTowerModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_save_load_fast_init_from_base(self): | |
# Override as it is a slow test on this model | |
super().test_save_load_fast_init_from_base() | |
# Override as extracting meaningful tensor from output is different for BridgeTower | |
def test_save_load(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**input_dict) | |
out_2 = self.extract_output(outputs, model_class.__name__) | |
out_2 = out_2.cpu().numpy() | |
out_2[np.isnan(out_2)] = 0 | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model = model_class.from_pretrained(tmpdirname) | |
model.to(torch_device) | |
with torch.no_grad(): | |
after_outputs = model(**input_dict) | |
# Make sure we don't have nans | |
out_1 = self.extract_output(after_outputs, model_class.__name__) | |
out_1 = out_1.cpu().numpy() | |
out_1[np.isnan(out_1)] = 0 | |
max_diff = np.amax(np.abs(out_1 - out_2)) | |
self.assertLessEqual(max_diff, 1e-5) | |
# Override this as `hidden states output` is different for BridgeTower | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states_text, hidden_states_vision, hidden_states_cross = ( | |
outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
) | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual( | |
sum((len(hidden_states_text), len(hidden_states_vision), len(hidden_states_cross))), | |
expected_num_layers, | |
) | |
seq_length = self.model_tester.seq_length | |
num_image_features = self.model_tester.num_image_features | |
self.assertListEqual( | |
list(hidden_states_text[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
self.assertListEqual( | |
list(hidden_states_vision[0].shape), | |
[num_image_features, 1, self.model_tester.hidden_size], | |
) | |
self.assertListEqual( | |
list(hidden_states_cross[0][0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
self.assertListEqual( | |
list(hidden_states_cross[0][1].shape[-2:]), | |
[num_image_features, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# Override as `hidden states output` is different for BridgeTower | |
def test_retain_grad_hidden_states_attentions(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = self.has_attentions | |
# no need to test all models as different heads yield the same functionality | |
model_class = self.all_model_classes[0] | |
model = model_class(config) | |
model.to(torch_device) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs = model(**inputs) | |
output = outputs[0] | |
# Encoder-/Decoder-only models | |
hidden_states = outputs.hidden_states[0][0] | |
hidden_states.retain_grad() | |
if self.has_attentions: | |
attentions = outputs.attentions[0][0] | |
attentions.retain_grad() | |
output.flatten()[0].backward(retain_graph=True) | |
self.assertIsNotNone(hidden_states.grad) | |
if self.has_attentions: | |
self.assertIsNotNone(attentions.grad) | |
# override as the `logit_scale` parameter initilization is different for BRIDGE TOWER | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
if name == "logit_scale": | |
self.assertAlmostEqual( | |
param.data.item(), | |
config.logit_scale_init_value, | |
delta=1e-3, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
def test_model_common_attributes(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class BridgeTowerModelIntegrationTest(unittest.TestCase): | |
def default_processor(self): | |
return ( | |
BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") | |
if is_vision_available() | |
else None | |
) | |
def test_image_and_text_retrieval(self): | |
model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm").to( | |
torch_device | |
) | |
model.eval() | |
processor = self.default_processor | |
image = prepare_img() | |
text = "a bunch of cats laying on a tower." | |
inputs = processor(image, text, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size([1, 2]) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
self.assertTrue(outputs.logits[0, 1].item() > outputs.logits[0, 0].item()) | |
# verify loss | |
inputs["labels"] = torch.ones(1, dtype=torch.long, device=torch_device) | |
inputs = inputs.to(torch_device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
self.assertAlmostEqual(outputs.loss.item(), 0.5108, places=4) | |
def test_masked_language_modeling(self): | |
model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm").to(torch_device) | |
model.eval() | |
processor = self.default_processor | |
image = prepare_img() | |
text = "a bunch of <mask> laying on a tower." | |
inputs = processor(image, text, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size([1, 11, 50265]) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
# verify predicted word | |
predicted_id = outputs.logits.argmax(dim=-1).squeeze(0).tolist()[4] | |
self.assertTrue(processor.decode([predicted_id]) == " cats") | |
# verify loss | |
inputs["labels"] = inputs["input_ids"].clone() | |
inputs = inputs.to(torch_device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
self.assertAlmostEqual(outputs.loss.item(), 5.7373, places=4) | |
def test_constrastive_learning(self): | |
model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc").to( | |
torch_device | |
) | |
model.eval() | |
processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") | |
image = prepare_img() | |
text = "a bunch of cats laying on a tower." | |
inputs = processor(image, text, padding=True, return_tensors="pt").to(torch_device) | |
with torch.no_grad(): | |
outputs = model(**inputs, output_hidden_states=True, return_loss=True) | |
# verify the logits | |
expected_shape = torch.Size([1, 3, 512]) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
class BridgeTowerModelTrainingTest(unittest.TestCase): | |
all_training_supported_model_classes = ( | |
(BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerForContrastiveLearning) | |
if is_torch_available() | |
else () | |
) | |
def setUp(self): | |
self.model_tester = BridgeTowerModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BridgeTowerConfig, hidden_size=37, vocab_size=99) | |
def _prepare_inputs_for_training(self, model_class): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if model_class == BridgeTowerForMaskedLM: | |
inputs_dict["labels"] = inputs_dict["input_ids"] | |
elif model_class == BridgeTowerForImageAndTextRetrieval: | |
inputs_dict["labels"] = ids_tensor([1], 2) | |
elif model_class == BridgeTowerForContrastiveLearning: | |
inputs_dict["return_loss"] = True | |
return config, inputs_dict | |
def _get_non_used_layer_names(self, model_class): | |
non_used_layer_names = ["text_model.pooler"] | |
if model_class == BridgeTowerForMaskedLM: | |
non_used_layer_names = non_used_layer_names + [ | |
"cross_modal_image_layers.5", | |
"cross_modal_image_pooler", | |
"cross_modal_text_pooler", | |
] | |
return non_used_layer_names | |
def _is_layer_used(self, model_class, layer_name): | |
non_used_layer_names = self._get_non_used_layer_names(model_class) | |
for non_used_layer_name in non_used_layer_names: | |
if non_used_layer_name in layer_name: | |
return False | |
return True | |
def test_training(self): | |
for model_class in self.all_training_supported_model_classes: | |
config, inputs_dict = self._prepare_inputs_for_training(model_class) | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
loss = model(**inputs_dict).loss | |
loss.backward() | |
# verify the gradients of used layers' weight are not None | |
for name, param in model.named_parameters(): | |
if self._is_layer_used(model_class, name): | |
self.assertIsNotNone(param.grad, f"Gradients should not be None - got {param.grad} for {name}") | |