Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch CLIPSeg model. """ | |
import inspect | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
import requests | |
import transformers | |
from transformers import MODEL_MAPPING, CLIPSegConfig, CLIPSegProcessor, CLIPSegTextConfig, CLIPSegVisionConfig | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import ( | |
is_flax_available, | |
is_pt_flax_cross_test, | |
require_torch, | |
require_vision, | |
slow, | |
torch_device, | |
) | |
from transformers.utils import is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
_config_zero_init, | |
floats_tensor, | |
ids_tensor, | |
random_attention_mask, | |
) | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegTextModel, CLIPSegVisionModel | |
from transformers.models.clipseg.modeling_clipseg import CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
if is_flax_available(): | |
import jax.numpy as jnp | |
from transformers.modeling_flax_pytorch_utils import ( | |
convert_pytorch_state_dict_to_flax, | |
load_flax_weights_in_pytorch_model, | |
) | |
class CLIPSegVisionModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
image_size=30, | |
patch_size=2, | |
num_channels=3, | |
is_training=True, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.initializer_range = initializer_range | |
self.scope = scope | |
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) | |
num_patches = (image_size // patch_size) ** 2 | |
self.seq_length = num_patches + 1 | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
config = self.get_config() | |
return config, pixel_values | |
def get_config(self): | |
return CLIPSegVisionConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, pixel_values): | |
model = CLIPSegVisionModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(pixel_values) | |
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) | |
image_size = (self.image_size, self.image_size) | |
patch_size = (self.patch_size, self.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class CLIPSegVisionModelTest(ModelTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as CLIPSeg does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (CLIPSegVisionModel,) if is_torch_available() else () | |
fx_compatible = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = CLIPSegVisionModelTester(self) | |
self.config_tester = ConfigTester( | |
self, config_class=CLIPSegVisionConfig, has_text_modality=False, hidden_size=37 | |
) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_save_load_fast_init_from_base(self): | |
pass | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = CLIPSegVisionModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class CLIPSegTextModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
if input_mask is not None: | |
batch_size, seq_length = input_mask.shape | |
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
input_mask[batch_idx, :start_index] = 1 | |
input_mask[batch_idx, start_index:] = 0 | |
config = self.get_config() | |
return config, input_ids, input_mask | |
def get_config(self): | |
return CLIPSegTextConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, input_ids, input_mask): | |
model = CLIPSegTextModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(input_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, input_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class CLIPSegTextModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (CLIPSegTextModel,) if is_torch_available() else () | |
fx_compatible = False | |
test_pruning = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = CLIPSegTextModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=CLIPSegTextConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_save_load_fast_init_from_base(self): | |
pass | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = CLIPSegTextModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class CLIPSegModelTester: | |
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): | |
if text_kwargs is None: | |
text_kwargs = {} | |
if vision_kwargs is None: | |
vision_kwargs = {} | |
self.parent = parent | |
self.text_model_tester = CLIPSegTextModelTester(parent, **text_kwargs) | |
self.vision_model_tester = CLIPSegVisionModelTester(parent, **vision_kwargs) | |
self.is_training = is_training | |
def prepare_config_and_inputs(self): | |
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
config = self.get_config() | |
return config, input_ids, attention_mask, pixel_values | |
def get_config(self): | |
return CLIPSegConfig.from_text_vision_configs( | |
self.text_model_tester.get_config(), | |
self.vision_model_tester.get_config(), | |
projection_dim=64, | |
reduce_dim=32, | |
extract_layers=[1, 2, 3], | |
) | |
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): | |
model = CLIPSegModel(config).to(torch_device).eval() | |
with torch.no_grad(): | |
result = model(input_ids, pixel_values, attention_mask) | |
self.parent.assertEqual( | |
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) | |
) | |
self.parent.assertEqual( | |
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) | |
) | |
def create_and_check_model_for_image_segmentation(self, config, input_ids, attention_maks, pixel_values): | |
model = CLIPSegForImageSegmentation(config).to(torch_device).eval() | |
with torch.no_grad(): | |
result = model(input_ids, pixel_values) | |
self.parent.assertEqual( | |
result.logits.shape, | |
( | |
self.vision_model_tester.batch_size, | |
self.vision_model_tester.image_size, | |
self.vision_model_tester.image_size, | |
), | |
) | |
self.parent.assertEqual( | |
result.conditional_embeddings.shape, (self.text_model_tester.batch_size, config.projection_dim) | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, attention_mask, pixel_values = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
} | |
return config, inputs_dict | |
class CLIPSegModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (CLIPSegModel, CLIPSegForImageSegmentation) if is_torch_available() else () | |
pipeline_model_mapping = {"feature-extraction": CLIPSegModel} if is_torch_available() else {} | |
fx_compatible = False | |
test_head_masking = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_attention_outputs = False | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
# CLIPSegForImageSegmentation requires special treatment | |
if return_labels: | |
if model_class.__name__ == "CLIPSegForImageSegmentation": | |
batch_size, _, height, width = inputs_dict["pixel_values"].shape | |
inputs_dict["labels"] = torch.zeros( | |
[batch_size, height, width], device=torch_device, dtype=torch.float | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = CLIPSegModelTester(self) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_for_image_segmentation(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_for_image_segmentation(*config_and_inputs) | |
def test_hidden_states_output(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_retain_grad_hidden_states_attentions(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
# override as the some parameters require custom initialization | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
# check if `logit_scale` is initilized as per the original implementation | |
if "logit_scale" in name: | |
self.assertAlmostEqual( | |
param.data.item(), | |
np.log(1 / 0.07), | |
delta=1e-3, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
elif "film" in name or "transposed_conv" in name or "reduce" in name: | |
# those parameters use PyTorch' default nn.Linear initialization scheme | |
pass | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
def _create_and_check_torchscript(self, config, inputs_dict): | |
if not self.test_torchscript: | |
return | |
configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
configs_no_init.torchscript = True | |
configs_no_init.return_dict = False | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
model.to(torch_device) | |
model.eval() | |
try: | |
input_ids = inputs_dict["input_ids"] | |
pixel_values = inputs_dict["pixel_values"] # CLIPSeg needs pixel_values | |
traced_model = torch.jit.trace(model, (input_ids, pixel_values)) | |
except RuntimeError: | |
self.fail("Couldn't trace module.") | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
try: | |
torch.jit.save(traced_model, pt_file_name) | |
except Exception: | |
self.fail("Couldn't save module.") | |
try: | |
loaded_model = torch.jit.load(pt_file_name) | |
except Exception: | |
self.fail("Couldn't load module.") | |
model.to(torch_device) | |
model.eval() | |
loaded_model.to(torch_device) | |
loaded_model.eval() | |
model_state_dict = model.state_dict() | |
loaded_model_state_dict = loaded_model.state_dict() | |
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
models_equal = True | |
for layer_name, p1 in model_state_dict.items(): | |
p2 = loaded_model_state_dict[layer_name] | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
def test_load_vision_text_config(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# Save CLIPSegConfig and check if we can load CLIPSegVisionConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
vision_config = CLIPSegVisionConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) | |
# Save CLIPSegConfig and check if we can load CLIPSegTextConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
text_config = CLIPSegTextConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
# overwrite from common since FlaxCLIPSegModel returns nested output | |
# which is not supported in the common test | |
def test_equivalence_pt_to_flax(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
# load PyTorch class | |
pt_model = model_class(config).eval() | |
# Flax models don't use the `use_cache` option and cache is not returned as a default. | |
# So we disable `use_cache` here for PyTorch model. | |
pt_model.config.use_cache = False | |
fx_model_class_name = "Flax" + model_class.__name__ | |
if not hasattr(transformers, fx_model_class_name): | |
return | |
fx_model_class = getattr(transformers, fx_model_class_name) | |
# load Flax class | |
fx_model = fx_model_class(config, dtype=jnp.float32) | |
# make sure only flax inputs are forward that actually exist in function args | |
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() | |
# prepare inputs | |
pt_inputs = self._prepare_for_class(inputs_dict, model_class) | |
# remove function args that don't exist in Flax | |
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} | |
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) | |
fx_model.params = fx_state | |
with torch.no_grad(): | |
pt_outputs = pt_model(**pt_inputs).to_tuple() | |
# convert inputs to Flax | |
fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)} | |
fx_outputs = fx_model(**fx_inputs).to_tuple() | |
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): | |
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pt_model.save_pretrained(tmpdirname) | |
fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True) | |
fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple() | |
self.assertEqual( | |
len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" | |
) | |
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): | |
self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) | |
# overwrite from common since FlaxCLIPSegModel returns nested output | |
# which is not supported in the common test | |
def test_equivalence_flax_to_pt(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
# load corresponding PyTorch class | |
pt_model = model_class(config).eval() | |
# So we disable `use_cache` here for PyTorch model. | |
pt_model.config.use_cache = False | |
fx_model_class_name = "Flax" + model_class.__name__ | |
if not hasattr(transformers, fx_model_class_name): | |
# no flax model exists for this class | |
return | |
fx_model_class = getattr(transformers, fx_model_class_name) | |
# load Flax class | |
fx_model = fx_model_class(config, dtype=jnp.float32) | |
# make sure only flax inputs are forward that actually exist in function args | |
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() | |
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) | |
# make sure weights are tied in PyTorch | |
pt_model.tie_weights() | |
# prepare inputs | |
pt_inputs = self._prepare_for_class(inputs_dict, model_class) | |
# remove function args that don't exist in Flax | |
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} | |
with torch.no_grad(): | |
pt_outputs = pt_model(**pt_inputs).to_tuple() | |
fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)} | |
fx_outputs = fx_model(**fx_inputs).to_tuple() | |
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): | |
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
fx_model.save_pretrained(tmpdirname) | |
pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True) | |
with torch.no_grad(): | |
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() | |
self.assertEqual( | |
len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" | |
) | |
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]): | |
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
if model_class in get_values(MODEL_MAPPING): | |
continue | |
print("Model class:", model_class) | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
for k, v in inputs.items(): | |
print(k, v.shape) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_model_from_pretrained(self): | |
for model_name in CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = CLIPSegModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
image = Image.open(requests.get(url, stream=True).raw) | |
return image | |
class CLIPSegModelIntegrationTest(unittest.TestCase): | |
def test_inference_image_segmentation(self): | |
model_name = "CIDAS/clipseg-rd64-refined" | |
processor = CLIPSegProcessor.from_pretrained(model_name) | |
model = CLIPSegForImageSegmentation.from_pretrained(model_name).to(torch_device) | |
image = prepare_img() | |
texts = ["a cat", "a remote", "a blanket"] | |
inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the predicted masks | |
self.assertEqual( | |
outputs.logits.shape, | |
torch.Size((3, 352, 352)), | |
) | |
expected_masks_slice = torch.tensor( | |
[[-7.4613, -7.4785, -7.3628], [-7.3268, -7.0899, -7.1333], [-6.9838, -6.7900, -6.8913]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_masks_slice, atol=1e-3)) | |
# verify conditional and pooled output | |
expected_conditional = torch.tensor([0.5601, -0.0314, 0.1980]).to(torch_device) | |
expected_pooled_output = torch.tensor([0.5036, -0.2681, -0.2644]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.conditional_embeddings[0, :3], expected_conditional, atol=1e-3)) | |
self.assertTrue(torch.allclose(outputs.pooled_output[0, :3], expected_pooled_output, atol=1e-3)) | |