Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch DeiT model. """ | |
import inspect | |
import unittest | |
import warnings | |
from transformers import DeiTConfig | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import ( | |
require_accelerate, | |
require_torch, | |
require_torch_gpu, | |
require_vision, | |
slow, | |
torch_device, | |
) | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import ( | |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
MODEL_MAPPING, | |
DeiTForImageClassification, | |
DeiTForImageClassificationWithTeacher, | |
DeiTForMaskedImageModeling, | |
DeiTModel, | |
) | |
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import DeiTFeatureExtractor | |
class DeiTModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=30, | |
patch_size=2, | |
num_channels=3, | |
is_training=True, | |
use_labels=True, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
type_sequence_label_size=10, | |
initializer_range=0.02, | |
num_labels=3, | |
scope=None, | |
encoder_stride=2, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.scope = scope | |
self.encoder_stride = encoder_stride | |
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) | |
num_patches = (image_size // patch_size) ** 2 | |
self.seq_length = num_patches + 2 | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
config = self.get_config() | |
return config, pixel_values, labels | |
def get_config(self): | |
return DeiTConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
encoder_stride=self.encoder_stride, | |
) | |
def create_and_check_model(self, config, pixel_values, labels): | |
model = DeiTModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): | |
model = DeiTForMaskedImageModeling(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) | |
) | |
# test greyscale images | |
config.num_channels = 1 | |
model = DeiTForMaskedImageModeling(config) | |
model.to(torch_device) | |
model.eval() | |
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
config.num_labels = self.type_sequence_label_size | |
model = DeiTForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
# test greyscale images | |
config.num_channels = 1 | |
model = DeiTForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
pixel_values, | |
labels, | |
) = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = ( | |
( | |
DeiTModel, | |
DeiTForImageClassification, | |
DeiTForImageClassificationWithTeacher, | |
DeiTForMaskedImageModeling, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": DeiTModel, | |
"image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = DeiTModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_masked_image_modeling(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
# special case for DeiTForImageClassificationWithTeacher model | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class.__name__ == "DeiTForImageClassificationWithTeacher": | |
del inputs_dict["labels"] | |
return inputs_dict | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
for model_class in self.all_model_classes: | |
# DeiTForImageClassificationWithTeacher supports inference-only | |
if ( | |
model_class in get_values(MODEL_MAPPING) | |
or model_class.__name__ == "DeiTForImageClassificationWithTeacher" | |
): | |
continue | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_training_gradient_checkpointing(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.model_tester.is_training: | |
return | |
config.use_cache = False | |
config.return_dict = True | |
for model_class in self.all_model_classes: | |
if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing: | |
continue | |
# DeiTForImageClassificationWithTeacher supports inference-only | |
if model_class.__name__ == "DeiTForImageClassificationWithTeacher": | |
continue | |
model = model_class(config) | |
model.gradient_checkpointing_enable() | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_problem_types(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
problem_types = [ | |
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, | |
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, | |
{"title": "regression", "num_labels": 1, "dtype": torch.float}, | |
] | |
for model_class in self.all_model_classes: | |
if ( | |
model_class | |
not in [ | |
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), | |
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), | |
] | |
or model_class.__name__ == "DeiTForImageClassificationWithTeacher" | |
): | |
continue | |
for problem_type in problem_types: | |
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): | |
config.problem_type = problem_type["title"] | |
config.num_labels = problem_type["num_labels"] | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
if problem_type["num_labels"] > 1: | |
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) | |
inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) | |
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different | |
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure | |
# they have the same size." which is a symptom something in wrong for the regression problem. | |
# See https://github.com/huggingface/transformers/issues/11780 | |
with warnings.catch_warnings(record=True) as warning_list: | |
loss = model(**inputs).loss | |
for w in warning_list: | |
if "Using a target size that is different to the input size" in str(w.message): | |
raise ValueError( | |
f"Something is going wrong in the regression problem: intercepted {w.message}" | |
) | |
loss.backward() | |
def test_model_from_pretrained(self): | |
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = DeiTModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class DeiTModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
return ( | |
DeiTFeatureExtractor.from_pretrained("facebook/deit-base-distilled-patch16-224") | |
if is_vision_available() | |
else None | |
) | |
def test_inference_image_classification_head(self): | |
model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to( | |
torch_device | |
) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 1000)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |
def test_inference_fp16(self): | |
r""" | |
A small test to make sure that inference work in half precision without any problem. | |
""" | |
model = DeiTModel.from_pretrained( | |
"facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto" | |
) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values.to(torch_device) | |
# forward pass to make sure inference works in fp16 | |
with torch.no_grad(): | |
_ = model(pixel_values) | |