Spaces:
Runtime error
Runtime error
update cap
Browse files
multimodal/open_flamingo/chat/conversation.py
CHANGED
@@ -19,7 +19,7 @@ import gradio as gr
|
|
19 |
from huggingface_hub import hf_hub_download, login
|
20 |
|
21 |
from open_flamingo.src.factory import create_model_and_transforms
|
22 |
-
from open_flamingo.eval.task.
|
23 |
|
24 |
class SeparatorStyle(Enum):
|
25 |
"""Different separator style."""
|
|
|
19 |
from huggingface_hub import hf_hub_download, login
|
20 |
|
21 |
from open_flamingo.src.factory import create_model_and_transforms
|
22 |
+
from open_flamingo.eval.task.caption_chat import captioner
|
23 |
|
24 |
class SeparatorStyle(Enum):
|
25 |
"""Different separator style."""
|
multimodal/open_flamingo/eval/task/caption_chat.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import more_itertools
|
4 |
+
from tqdm import tqdm
|
5 |
+
import json
|
6 |
+
import time
|
7 |
+
import os
|
8 |
+
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
class VisualLogitsProcessor(LogitsProcessor):
|
12 |
+
def __init__(self, tokenizer):
|
13 |
+
super().__init__()
|
14 |
+
self.tokenizer = tokenizer
|
15 |
+
self.object_token_id = self.tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
|
16 |
+
self.prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
|
17 |
+
self.box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
|
18 |
+
self.previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
|
19 |
+
self.visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
|
20 |
+
self.eos_token_id = self.tokenizer.encode(self.tokenizer.eos_token)[-1]
|
21 |
+
self.endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
|
22 |
+
self.topk = 2
|
23 |
+
|
24 |
+
def __call__(self, input_ids, scores):
|
25 |
+
# print("decoding===>", self.tokenizer.decode(scores.sort(descending=True).indices.tolist()[0][:self.topk]))
|
26 |
+
# import pdb; pdb.set_trace()
|
27 |
+
if self.object_token_id in scores.sort(descending=True).indices.tolist()[0][1:self.topk] and self.eos_token_id not in scores.sort(descending=True).indices.tolist()[0][:self.topk] and (input_ids == self.object_token_id).sum() * 2 == (input_ids == self.endofobject_token_id).sum():
|
28 |
+
scores[0, self.object_token_id] = 1000
|
29 |
+
if input_ids[0, -1] == self.object_token_id and input_ids[0, -2] != self.prebox_token_id:
|
30 |
+
if (input_ids[0, :-1] == self.object_token_id).sum() != 0:
|
31 |
+
# print("generate a previsual token next")
|
32 |
+
scores[0, self.previsual_token_id] = 1000
|
33 |
+
elif input_ids[0, -1] == self.previsual_token_id or input_ids[0, -1] == self.visual_token_id:
|
34 |
+
# print("stop to run bbox generation for " + "previsual" if input_ids[0, -1] == self.previsual_token_id else "visual")
|
35 |
+
scores[0, self.eos_token_id] = 1000
|
36 |
+
elif input_ids[0, -1] == self.endofobject_token_id and input_ids[0, -2] != self.box_token_id:
|
37 |
+
# print("generate a visual token next")
|
38 |
+
scores[0, self.visual_token_id] = 1000
|
39 |
+
return scores
|
40 |
+
|
41 |
+
|
42 |
+
def prepare_batch_images(batch, image_processor):
|
43 |
+
batch_images = None
|
44 |
+
for b in batch:
|
45 |
+
b_image = image_processor(b["image"]).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
46 |
+
if batch_images is None:
|
47 |
+
batch_images = b_image
|
48 |
+
else:
|
49 |
+
batch_images = torch.cat([batch_images, b_image], dim=0)
|
50 |
+
return batch_images
|
51 |
+
|
52 |
+
|
53 |
+
def captioner(
|
54 |
+
model,tokenizer,image_ori,batch_images,input_ids,attention_mask,image_start_index_list,image_nums,added_bbox_list,debug=False):
|
55 |
+
"""Evaluate a model on COCO dataset.
|
56 |
+
Returns:
|
57 |
+
float: CIDEr score
|
58 |
+
|
59 |
+
"""
|
60 |
+
visual_logits_processor = VisualLogitsProcessor(tokenizer)
|
61 |
+
model.eval()
|
62 |
+
# model.eval().cuda()
|
63 |
+
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
|
64 |
+
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
65 |
+
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
|
66 |
+
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
|
67 |
+
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
|
68 |
+
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
|
69 |
+
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
|
70 |
+
box_token = "<|#box#|>"
|
71 |
+
prebox_token = "<|#prebox#|>"
|
72 |
+
endofobject_token = "<|#endofobject#|>"
|
73 |
+
object_token = "<|#object#|>"
|
74 |
+
ori_prompt_length = len(input_ids[0])
|
75 |
+
have_prebox = False
|
76 |
+
while True:
|
77 |
+
batch_images = batch_images
|
78 |
+
input_ids = input_ids
|
79 |
+
attention_mask = attention_mask
|
80 |
+
image_start_index_list = image_start_index_list
|
81 |
+
image_nums = image_nums
|
82 |
+
if debug:
|
83 |
+
print("input--->",tokenizer.decode(input_ids[0]))
|
84 |
+
p1 = MinNewTokensLengthLogitsProcessor(
|
85 |
+
prompt_length_to_skip=input_ids.shape[-1],
|
86 |
+
min_new_tokens=5,
|
87 |
+
eos_token_id=bos_token_id,
|
88 |
+
)
|
89 |
+
with torch.inference_mode():
|
90 |
+
outputs = model.generate(
|
91 |
+
batch_images,
|
92 |
+
input_ids,
|
93 |
+
attention_mask=attention_mask,
|
94 |
+
max_new_tokens=20,
|
95 |
+
# min_new_tokens=8,
|
96 |
+
num_beams=1,
|
97 |
+
# length_penalty=0,
|
98 |
+
image_start_index_list=image_start_index_list,
|
99 |
+
image_nums=image_nums,
|
100 |
+
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
101 |
+
logits_processor_list=[p1, visual_logits_processor],
|
102 |
+
)
|
103 |
+
if debug:
|
104 |
+
print("outputs--->",tokenizer.decode(outputs[0]))
|
105 |
+
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
|
106 |
+
prompt = tokenizer.decode(outputs.clone()[0])
|
107 |
+
is_visual = (outputs[0, -2] == visual_token_id)
|
108 |
+
batch_text = tokenizer.batch_decode(outputs[:, :-1])
|
109 |
+
encodings = tokenizer(
|
110 |
+
batch_text,
|
111 |
+
padding="longest",
|
112 |
+
truncation=True,
|
113 |
+
return_tensors="pt",
|
114 |
+
max_length=2000,
|
115 |
+
)
|
116 |
+
input_ids = encodings["input_ids"]
|
117 |
+
attention_mask = encodings["attention_mask"]
|
118 |
+
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
119 |
+
image_start_index_list = [[x] for x in image_start_index_list]
|
120 |
+
image_nums = [1] * len(input_ids)
|
121 |
+
if debug:
|
122 |
+
print("get the visual bbox--->",tokenizer.decode(input_ids[0]))
|
123 |
+
with torch.no_grad():
|
124 |
+
outputs = model(
|
125 |
+
vision_x=batch_images,
|
126 |
+
lang_x=input_ids,
|
127 |
+
attention_mask=attention_mask,
|
128 |
+
image_nums=image_nums,
|
129 |
+
image_start_index_list=image_start_index_list,
|
130 |
+
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
131 |
+
add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
|
132 |
+
)
|
133 |
+
boxes = outputs["boxes"]
|
134 |
+
scores = outputs["scores"]
|
135 |
+
# if not model.valid:
|
136 |
+
# import pdb; pdb.set_trace()
|
137 |
+
if boxes is not None:
|
138 |
+
if is_visual:
|
139 |
+
if have_prebox:
|
140 |
+
added_bbox_list.pop()
|
141 |
+
prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
|
142 |
+
have_prebox = False
|
143 |
+
if debug:
|
144 |
+
print("find previsual and remove it--->", prompt)
|
145 |
+
first_box = boxes[scores.argmax()]
|
146 |
+
added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
|
147 |
+
prompt = prompt[:-len(tokenizer.eos_token)]
|
148 |
+
prompt += box_token + endofobject_token
|
149 |
+
if debug:
|
150 |
+
print("after inserting visual---->", prompt)
|
151 |
+
else:
|
152 |
+
import numpy as np
|
153 |
+
import cv2
|
154 |
+
open_cv_image = np.array(image_ori)
|
155 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
156 |
+
for i, pre_box in enumerate(boxes):
|
157 |
+
open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), i+1)
|
158 |
+
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
159 |
+
# exit()
|
160 |
+
pre_box = boxes[scores.argmax()]
|
161 |
+
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
|
162 |
+
prompt = prompt[:-len(tokenizer.eos_token)]
|
163 |
+
prompt += prebox_token + object_token
|
164 |
+
have_prebox = True
|
165 |
+
if debug:
|
166 |
+
print("after inserting previsual---->", prompt)
|
167 |
+
else:
|
168 |
+
if debug:
|
169 |
+
import pdb;pdb.set_trace()
|
170 |
+
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
|
171 |
+
else:
|
172 |
+
break
|
173 |
+
outputs = outputs[:, ori_prompt_length:]
|
174 |
+
outputs = postprocess_captioning_generation(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]).replace('"', "")
|
175 |
+
# new_predictions = [
|
176 |
+
# postprocess_captioning_generation(out).replace('"', "")
|
177 |
+
# for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
178 |
+
# ]
|
179 |
+
# import pdb; pdb.set_trace()
|
180 |
+
return outputs, out_image
|
181 |
+
|
182 |
+
|
183 |
+
def evaluate_coco_flickr(
|
184 |
+
model,
|
185 |
+
tokenizer,
|
186 |
+
image_processor,
|
187 |
+
batch_size,
|
188 |
+
is_flickr=False,
|
189 |
+
vis_embed_size=None,
|
190 |
+
rank=0,
|
191 |
+
world_size=1,
|
192 |
+
id=0,
|
193 |
+
debug=False,
|
194 |
+
):
|
195 |
+
"""Evaluate a model on COCO dataset.
|
196 |
+
Returns:
|
197 |
+
float: CIDEr score
|
198 |
+
|
199 |
+
"""
|
200 |
+
visual_logits_processor = VisualLogitsProcessor(tokenizer)
|
201 |
+
coco_dataset = load_dataset("coco_caption")
|
202 |
+
eval_dataset = coco_dataset["test"]
|
203 |
+
model.eval().cuda()
|
204 |
+
predictions = dict()
|
205 |
+
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
|
206 |
+
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
207 |
+
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
|
208 |
+
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
|
209 |
+
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
|
210 |
+
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
|
211 |
+
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
|
212 |
+
box_token = "<|#box#|>"
|
213 |
+
prebox_token = "<|#prebox#|>"
|
214 |
+
endofobject_token = "<|#endofobject#|>"
|
215 |
+
object_token = "<|#object#|>"
|
216 |
+
cnt = 0
|
217 |
+
if world_size > 1:
|
218 |
+
torch.distributed.barrier()
|
219 |
+
desc = "Running inference Flickr30" if is_flickr else "Running inference COCO"
|
220 |
+
for ii, batch in enumerate(more_itertools.chunked(
|
221 |
+
tqdm(eval_dataset, desc=desc, disable=(rank != 0)), batch_size
|
222 |
+
)):
|
223 |
+
if ii % world_size != rank:
|
224 |
+
continue
|
225 |
+
cnt += len(batch)
|
226 |
+
batch[0]["image"] = Image.open("/gpfs/u/home/LMCG/LMCGljnn/scratch/images/img3.jpg").resize((224, 224))
|
227 |
+
batch_images = prepare_batch_images(
|
228 |
+
batch=batch,
|
229 |
+
image_processor=image_processor,
|
230 |
+
).cuda()
|
231 |
+
prompt = f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>"
|
232 |
+
added_bbox_list = []
|
233 |
+
batch_text = [prompt for _ in batch]
|
234 |
+
encodings = tokenizer(
|
235 |
+
batch_text,
|
236 |
+
padding="longest",
|
237 |
+
truncation=True,
|
238 |
+
return_tensors="pt",
|
239 |
+
max_length=2000,
|
240 |
+
)
|
241 |
+
ori_prompt_length = len(encodings["input_ids"][0])
|
242 |
+
have_prebox = False
|
243 |
+
while True:
|
244 |
+
batch_text = [prompt for _ in batch]
|
245 |
+
encodings = tokenizer(
|
246 |
+
batch_text,
|
247 |
+
padding="longest",
|
248 |
+
truncation=True,
|
249 |
+
return_tensors="pt",
|
250 |
+
max_length=2000,
|
251 |
+
)
|
252 |
+
input_ids = encodings["input_ids"].cuda()
|
253 |
+
attention_mask = encodings["attention_mask"].cuda()
|
254 |
+
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
255 |
+
image_start_index_list = [[x] for x in image_start_index_list]
|
256 |
+
image_nums = [1] * len(input_ids)
|
257 |
+
if debug:
|
258 |
+
print("input--->",tokenizer.decode(input_ids[0]))
|
259 |
+
p1 = MinNewTokensLengthLogitsProcessor(
|
260 |
+
prompt_length_to_skip=input_ids.shape[-1],
|
261 |
+
min_new_tokens=5,
|
262 |
+
eos_token_id=bos_token_id,
|
263 |
+
)
|
264 |
+
with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
|
265 |
+
outputs = model.generate(
|
266 |
+
batch_images,
|
267 |
+
input_ids,
|
268 |
+
attention_mask=attention_mask,
|
269 |
+
max_new_tokens=20,
|
270 |
+
# min_new_tokens=8,
|
271 |
+
num_beams=1,
|
272 |
+
# length_penalty=0,
|
273 |
+
image_start_index_list=image_start_index_list,
|
274 |
+
image_nums=image_nums,
|
275 |
+
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
276 |
+
logits_processor_list=[p1, visual_logits_processor],
|
277 |
+
)
|
278 |
+
if debug:
|
279 |
+
print("outputs--->",tokenizer.decode(outputs[0]))
|
280 |
+
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
|
281 |
+
prompt = tokenizer.decode(outputs.clone()[0])
|
282 |
+
is_visual = (outputs[0, -2] == visual_token_id)
|
283 |
+
batch_text = tokenizer.batch_decode(outputs[:, :-1])
|
284 |
+
encodings = tokenizer(
|
285 |
+
batch_text,
|
286 |
+
padding="longest",
|
287 |
+
truncation=True,
|
288 |
+
return_tensors="pt",
|
289 |
+
max_length=2000,
|
290 |
+
)
|
291 |
+
input_ids = encodings["input_ids"].cuda()
|
292 |
+
attention_mask = encodings["attention_mask"].cuda()
|
293 |
+
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
294 |
+
image_start_index_list = [[x] for x in image_start_index_list]
|
295 |
+
image_nums = [1] * len(input_ids)
|
296 |
+
if debug:
|
297 |
+
print("get the visual bbox--->",tokenizer.decode(input_ids[0]))
|
298 |
+
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
|
299 |
+
outputs = model(
|
300 |
+
vision_x=batch_images,
|
301 |
+
lang_x=input_ids,
|
302 |
+
attention_mask=attention_mask,
|
303 |
+
image_nums=image_nums,
|
304 |
+
image_start_index_list=image_start_index_list,
|
305 |
+
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
306 |
+
add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
|
307 |
+
)
|
308 |
+
boxes = outputs["boxes"]
|
309 |
+
scores = outputs["scores"]
|
310 |
+
# if not model.valid:
|
311 |
+
# import pdb; pdb.set_trace()
|
312 |
+
if boxes is not None:
|
313 |
+
if is_visual:
|
314 |
+
if have_prebox:
|
315 |
+
added_bbox_list.pop()
|
316 |
+
prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
|
317 |
+
have_prebox = False
|
318 |
+
if debug:
|
319 |
+
print("find previsual and remove it--->", prompt)
|
320 |
+
first_box = boxes[scores.argmax()]
|
321 |
+
added_bbox_list += [torch.tensor(first_box).unsqueeze(0).cuda() / 224]
|
322 |
+
prompt = prompt[:-len(tokenizer.eos_token)]
|
323 |
+
prompt += box_token + endofobject_token
|
324 |
+
if debug:
|
325 |
+
print("after inserting visual---->", prompt)
|
326 |
+
else:
|
327 |
+
import numpy as np
|
328 |
+
import cv2
|
329 |
+
open_cv_image = np.array(batch[0]["image"])
|
330 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
331 |
+
for i, pre_box in enumerate(boxes):
|
332 |
+
open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), i+1)
|
333 |
+
cv2.imwrite("Atest.png", open_cv_image)
|
334 |
+
exit()
|
335 |
+
pre_box = boxes[scores.argmax()]
|
336 |
+
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
|
337 |
+
prompt = prompt[:-len(tokenizer.eos_token)]
|
338 |
+
prompt += prebox_token + object_token
|
339 |
+
have_prebox = True
|
340 |
+
if debug:
|
341 |
+
print("after inserting previsual---->", prompt)
|
342 |
+
else:
|
343 |
+
import pdb;pdb.set_trace()
|
344 |
+
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
|
345 |
+
else:
|
346 |
+
break
|
347 |
+
outputs = outputs[:, ori_prompt_length:]
|
348 |
+
new_predictions = [
|
349 |
+
postprocess_captioning_generation(out).replace('"', "")
|
350 |
+
for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
351 |
+
]
|
352 |
+
# import pdb; pdb.set_trace()
|
353 |
+
if rank == 0:
|
354 |
+
tqdm.write(new_predictions[0])
|
355 |
+
for i, sample in enumerate(batch):
|
356 |
+
predictions[int(sample["image_id"])] = {
|
357 |
+
"caption": new_predictions[i],
|
358 |
+
}
|
359 |
+
print(new_predictions)
|
360 |
+
exit()
|
361 |
+
results_path = (
|
362 |
+
f"flickrresults_{lang_encoder_name}_{rank}_{id}.json"
|
363 |
+
if is_flickr
|
364 |
+
else f"cocoresults_{lang_encoder_name}_{rank}_{id}.json"
|
365 |
+
)
|
366 |
+
with open(results_path, "w") as f:
|
367 |
+
f.write(
|
368 |
+
json.dumps(
|
369 |
+
[
|
370 |
+
{"image_id": k, "caption": predictions[k]["caption"]}
|
371 |
+
for k in predictions
|
372 |
+
],
|
373 |
+
indent=2,
|
374 |
+
)
|
375 |
+
)
|
376 |
+
print("save to", results_path)
|
377 |
+
del predictions
|
378 |
+
time.sleep(10)
|
379 |
+
if world_size > 1:
|
380 |
+
torch.distributed.barrier()
|
381 |
+
if rank == 0:
|
382 |
+
print(f"evaluate on rank {rank}. world size is {world_size}")
|
383 |
+
predictions = []
|
384 |
+
for rank_i in range(world_size):
|
385 |
+
part_results_path = (
|
386 |
+
f"flickrresults_{lang_encoder_name}_{rank_i}_{id}.json"
|
387 |
+
if is_flickr
|
388 |
+
else f"cocoresults_{lang_encoder_name}_{rank_i}_{id}.json"
|
389 |
+
)
|
390 |
+
print("load", part_results_path)
|
391 |
+
predictions.extend(json.load(open(part_results_path)))
|
392 |
+
os.remove(part_results_path)
|
393 |
+
print("num:", len(predictions))
|
394 |
+
results_path = (
|
395 |
+
f"flickrresults_{lang_encoder_name}.json"
|
396 |
+
if is_flickr
|
397 |
+
else f"cocoresults_{lang_encoder_name}.json"
|
398 |
+
)
|
399 |
+
json.dump(predictions, open(results_path, "w"), indent=2)
|
400 |
+
|
401 |
+
metrics = compute_cider(
|
402 |
+
result_path=results_path,
|
403 |
+
annotations_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/.cache/lavis/coco_gt/coco_karpathy_test_gt.json",
|
404 |
+
)
|
405 |
+
metrics["CIDEr"] *= 100
|
406 |
+
os.makedirs("eval_results", exist_ok=True)
|
407 |
+
acc = metrics["CIDEr"]
|
408 |
+
with open(os.path.join("eval_results", f"cococap_{model.expr_name}_{model.step_num}_{int(time.time())}_{acc}"), "w") as f:
|
409 |
+
f.write(json.dumps(predictions, indent=2))
|
410 |
+
|
411 |
+
# delete the temporary file
|
412 |
+
os.remove(results_path)
|
413 |
+
else:
|
414 |
+
metrics = {}
|
415 |
+
metrics["CIDEr"] = 0.0
|
416 |
+
|
417 |
+
return metrics["CIDEr"]
|