#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import argparse import os from loguru import logger import torch from yolox.exp import get_exp def make_parser(): parser = argparse.ArgumentParser("YOLOX torchscript deploy") parser.add_argument( "--output-name", type=str, default="yolox.torchscript.pt", help="output name of models" ) parser.add_argument("--batch-size", type=int, default=1, help="batch size") parser.add_argument( "-f", "--exp_file", default=None, type=str, help="experiment description file", ) parser.add_argument("-expn", "--experiment-name", type=str, default=None) parser.add_argument("-n", "--name", type=str, default=None, help="model name") parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt path") parser.add_argument( "--decode_in_inference", action="store_true", help="decode in inference or not" ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) return parser @logger.catch def main(): args = make_parser().parse_args() logger.info("args value: {}".format(args)) exp = get_exp(args.exp_file, args.name) exp.merge(args.opts) if not args.experiment_name: args.experiment_name = exp.exp_name model = exp.get_model() if args.ckpt is None: file_name = os.path.join(exp.output_dir, args.experiment_name) ckpt_file = os.path.join(file_name, "best_ckpt.pth") else: ckpt_file = args.ckpt # load the model state dict ckpt = torch.load(ckpt_file, map_location="cpu") model.eval() if "model" in ckpt: ckpt = ckpt["model"] model.load_state_dict(ckpt) model.head.decode_in_inference = args.decode_in_inference logger.info("loading checkpoint done.") dummy_input = torch.randn(args.batch_size, 3, exp.test_size[0], exp.test_size[1]) mod = torch.jit.trace(model, dummy_input) mod.save(args.output_name) logger.info("generated torchscript model named {}".format(args.output_name)) if __name__ == "__main__": main()