// Copyright (C) 2018-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #include "megbrain/gopt/inference.h" #include "megbrain/opr/search_policy/algo_chooser_helper.h" #include "megbrain/serialization/serializer.h" #include #include #include #include #include #include #include /** * @brief Define names based depends on Unicode path support */ #define NMS_THRESH 0.45 #define BBOX_CONF_THRESH 0.25 constexpr int INPUT_W = 640; constexpr int INPUT_H = 640; using namespace mgb; cv::Mat static_resize(cv::Mat &img) { float r = std::min(INPUT_W / (img.cols * 1.0), INPUT_H / (img.rows * 1.0)); int unpad_w = r * img.cols; int unpad_h = r * img.rows; cv::Mat re(unpad_h, unpad_w, CV_8UC3); cv::resize(img, re, re.size()); cv::Mat out(INPUT_W, INPUT_H, CV_8UC3, cv::Scalar(114, 114, 114)); re.copyTo(out(cv::Rect(0, 0, re.cols, re.rows))); return out; } void blobFromImage(cv::Mat &img, float *blob_data) { int channels = 3; int img_h = img.rows; int img_w = img.cols; for (size_t c = 0; c < channels; c++) { for (size_t h = 0; h < img_h; h++) { for (size_t w = 0; w < img_w; w++) { blob_data[c * img_w * img_h + h * img_w + w] = (float)img.at(h, w)[c]; } } } } struct Object { cv::Rect_ rect; int label; float prob; }; struct GridAndStride { int grid0; int grid1; int stride; }; static void generate_grids_and_stride(const int target_size, std::vector &strides, std::vector &grid_strides) { for (auto stride : strides) { int num_grid = target_size / stride; for (int g1 = 0; g1 < num_grid; g1++) { for (int g0 = 0; g0 < num_grid; g0++) { grid_strides.push_back((GridAndStride){g0, g1, stride}); } } } } static void generate_yolox_proposals(std::vector grid_strides, const float *feat_ptr, float prob_threshold, std::vector &objects) { const int num_class = 80; const int num_anchors = grid_strides.size(); for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++) { const int grid0 = grid_strides[anchor_idx].grid0; const int grid1 = grid_strides[anchor_idx].grid1; const int stride = grid_strides[anchor_idx].stride; const int basic_pos = anchor_idx * 85; float x_center = (feat_ptr[basic_pos + 0] + grid0) * stride; float y_center = (feat_ptr[basic_pos + 1] + grid1) * stride; float w = exp(feat_ptr[basic_pos + 2]) * stride; float h = exp(feat_ptr[basic_pos + 3]) * stride; float x0 = x_center - w * 0.5f; float y0 = y_center - h * 0.5f; float box_objectness = feat_ptr[basic_pos + 4]; for (int class_idx = 0; class_idx < num_class; class_idx++) { float box_cls_score = feat_ptr[basic_pos + 5 + class_idx]; float box_prob = box_objectness * box_cls_score; if (box_prob > prob_threshold) { Object obj; obj.rect.x = x0; obj.rect.y = y0; obj.rect.width = w; obj.rect.height = h; obj.label = class_idx; obj.prob = box_prob; objects.push_back(obj); } } // class loop } // point anchor loop } static inline float intersection_area(const Object &a, const Object &b) { cv::Rect_ inter = a.rect & b.rect; return inter.area(); } static void qsort_descent_inplace(std::vector &faceobjects, int left, int right) { int i = left; int j = right; float p = faceobjects[(left + right) / 2].prob; while (i <= j) { while (faceobjects[i].prob > p) i++; while (faceobjects[j].prob < p) j--; if (i <= j) { // swap std::swap(faceobjects[i], faceobjects[j]); i++; j--; } } #pragma omp parallel sections { #pragma omp section { if (left < j) qsort_descent_inplace(faceobjects, left, j); } #pragma omp section { if (i < right) qsort_descent_inplace(faceobjects, i, right); } } } static void qsort_descent_inplace(std::vector &objects) { if (objects.empty()) return; qsort_descent_inplace(objects, 0, objects.size() - 1); } static void nms_sorted_bboxes(const std::vector &faceobjects, std::vector &picked, float nms_threshold) { picked.clear(); const int n = faceobjects.size(); std::vector areas(n); for (int i = 0; i < n; i++) { areas[i] = faceobjects[i].rect.area(); } for (int i = 0; i < n; i++) { const Object &a = faceobjects[i]; int keep = 1; for (int j = 0; j < (int)picked.size(); j++) { const Object &b = faceobjects[picked[j]]; // intersection over union float inter_area = intersection_area(a, b); float union_area = areas[i] + areas[picked[j]] - inter_area; // float IoU = inter_area / union_area if (inter_area / union_area > nms_threshold) keep = 0; } if (keep) picked.push_back(i); } } static void decode_outputs(const float *prob, std::vector &objects, float scale, const int img_w, const int img_h) { std::vector proposals; std::vector strides = {8, 16, 32}; std::vector grid_strides; generate_grids_and_stride(INPUT_W, strides, grid_strides); generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals); qsort_descent_inplace(proposals); std::vector picked; nms_sorted_bboxes(proposals, picked, NMS_THRESH); int count = picked.size(); objects.resize(count); for (int i = 0; i < count; i++) { objects[i] = proposals[picked[i]]; // adjust offset to original unpadded float x0 = (objects[i].rect.x) / scale; float y0 = (objects[i].rect.y) / scale; float x1 = (objects[i].rect.x + objects[i].rect.width) / scale; float y1 = (objects[i].rect.y + objects[i].rect.height) / scale; // clip x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f); y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f); x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f); y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f); objects[i].rect.x = x0; objects[i].rect.y = y0; objects[i].rect.width = x1 - x0; objects[i].rect.height = y1 - y0; } } const float color_list[80][3] = { {0.000, 0.447, 0.741}, {0.850, 0.325, 0.098}, {0.929, 0.694, 0.125}, {0.494, 0.184, 0.556}, {0.466, 0.674, 0.188}, {0.301, 0.745, 0.933}, {0.635, 0.078, 0.184}, {0.300, 0.300, 0.300}, {0.600, 0.600, 0.600}, {1.000, 0.000, 0.000}, {1.000, 0.500, 0.000}, {0.749, 0.749, 0.000}, {0.000, 1.000, 0.000}, {0.000, 0.000, 1.000}, {0.667, 0.000, 1.000}, {0.333, 0.333, 0.000}, {0.333, 0.667, 0.000}, {0.333, 1.000, 0.000}, {0.667, 0.333, 0.000}, {0.667, 0.667, 0.000}, {0.667, 1.000, 0.000}, {1.000, 0.333, 0.000}, {1.000, 0.667, 0.000}, {1.000, 1.000, 0.000}, {0.000, 0.333, 0.500}, {0.000, 0.667, 0.500}, {0.000, 1.000, 0.500}, {0.333, 0.000, 0.500}, {0.333, 0.333, 0.500}, {0.333, 0.667, 0.500}, {0.333, 1.000, 0.500}, {0.667, 0.000, 0.500}, {0.667, 0.333, 0.500}, {0.667, 0.667, 0.500}, {0.667, 1.000, 0.500}, {1.000, 0.000, 0.500}, {1.000, 0.333, 0.500}, {1.000, 0.667, 0.500}, {1.000, 1.000, 0.500}, {0.000, 0.333, 1.000}, {0.000, 0.667, 1.000}, {0.000, 1.000, 1.000}, {0.333, 0.000, 1.000}, {0.333, 0.333, 1.000}, {0.333, 0.667, 1.000}, {0.333, 1.000, 1.000}, {0.667, 0.000, 1.000}, {0.667, 0.333, 1.000}, {0.667, 0.667, 1.000}, {0.667, 1.000, 1.000}, {1.000, 0.000, 1.000}, {1.000, 0.333, 1.000}, {1.000, 0.667, 1.000}, {0.333, 0.000, 0.000}, {0.500, 0.000, 0.000}, {0.667, 0.000, 0.000}, {0.833, 0.000, 0.000}, {1.000, 0.000, 0.000}, {0.000, 0.167, 0.000}, {0.000, 0.333, 0.000}, {0.000, 0.500, 0.000}, {0.000, 0.667, 0.000}, {0.000, 0.833, 0.000}, {0.000, 1.000, 0.000}, {0.000, 0.000, 0.167}, {0.000, 0.000, 0.333}, {0.000, 0.000, 0.500}, {0.000, 0.000, 0.667}, {0.000, 0.000, 0.833}, {0.000, 0.000, 1.000}, {0.000, 0.000, 0.000}, {0.143, 0.143, 0.143}, {0.286, 0.286, 0.286}, {0.429, 0.429, 0.429}, {0.571, 0.571, 0.571}, {0.714, 0.714, 0.714}, {0.857, 0.857, 0.857}, {0.000, 0.447, 0.741}, {0.314, 0.717, 0.741}, {0.50, 0.5, 0}}; static void draw_objects(const cv::Mat &bgr, const std::vector &objects) { static const char *class_names[] = { "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"}; cv::Mat image = bgr.clone(); for (size_t i = 0; i < objects.size(); i++) { const Object &obj = objects[i]; fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); cv::Scalar color = cv::Scalar(color_list[obj.label][0], color_list[obj.label][1], color_list[obj.label][2]); float c_mean = cv::mean(color)[0]; cv::Scalar txt_color; if (c_mean > 0.5) { txt_color = cv::Scalar(0, 0, 0); } else { txt_color = cv::Scalar(255, 255, 255); } cv::rectangle(image, obj.rect, color * 255, 2); char text[256]; sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); int baseLine = 0; cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); cv::Scalar txt_bk_color = color * 0.7 * 255; int x = obj.rect.x; int y = obj.rect.y + 1; // int y = obj.rect.y - label_size.height - baseLine; if (y > image.rows) y = image.rows; // if (x + label_size.width > image.cols) // x = image.cols - label_size.width; cv::rectangle( image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), txt_bk_color, -1); cv::putText(image, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.4, txt_color, 1); } cv::imwrite("out.jpg", image); std::cout << "save output to out.jpg" << std::endl; } cg::ComputingGraph::OutputSpecItem make_callback_copy(SymbolVar dev, HostTensorND &host) { auto cb = [&host](DeviceTensorND &d) { host.copy_from(d); }; return {dev, cb}; } int main(int argc, char *argv[]) { serialization::GraphLoader::LoadConfig load_config; load_config.comp_graph = ComputingGraph::make(); auto &&graph_opt = load_config.comp_graph->options(); graph_opt.graph_opt_level = 0; if (argc != 9) { std::cout << "Usage : " << argv[0] << " " " " "" << std::endl; return EXIT_FAILURE; } const std::string input_model{argv[1]}; const std::string input_image_path{argv[2]}; const std::string device{argv[3]}; const size_t warmup_count = atoi(argv[4]); const size_t thread_number = atoi(argv[5]); const size_t use_fast_run = atoi(argv[6]); const size_t use_weight_preprocess = atoi(argv[7]); const size_t run_with_fp16 = atoi(argv[8]); if (device == "cuda") { load_config.comp_node_mapper = [](CompNode::Locator &loc) { loc.type = CompNode::DeviceType::CUDA; }; } else if (device == "cpu") { load_config.comp_node_mapper = [](CompNode::Locator &loc) { loc.type = CompNode::DeviceType::CPU; }; } else if (device == "multithread") { load_config.comp_node_mapper = [thread_number](CompNode::Locator &loc) { loc.type = CompNode::DeviceType::MULTITHREAD; loc.device = 0; loc.stream = thread_number; }; std::cout << "use " << thread_number << " thread" << std::endl; } else { std::cout << "device only support cuda or cpu or multithread" << std::endl; return EXIT_FAILURE; } if (use_weight_preprocess) { std::cout << "use weight preprocess" << std::endl; graph_opt.graph_opt.enable_weight_preprocess(); } if (run_with_fp16) { std::cout << "run with fp16" << std::endl; graph_opt.graph_opt.enable_f16_io_comp(); } if (device == "cuda") { std::cout << "choose format for cuda" << std::endl; } else { std::cout << "choose format for non-cuda" << std::endl; #if defined(__arm__) || defined(__aarch64__) if (run_with_fp16) { std::cout << "use chw format when enable fp16" << std::endl; } else { std::cout << "choose format for nchw44 for aarch64" << std::endl; graph_opt.graph_opt.enable_nchw44(); } #endif #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) // graph_opt.graph_opt.enable_nchw88(); #endif } std::unique_ptr inp_file = serialization::InputFile::make_fs(input_model.c_str()); auto loader = serialization::GraphLoader::make(std::move(inp_file)); serialization::GraphLoader::LoadResult network = loader->load(load_config, false); if (use_fast_run) { std::cout << "use fastrun" << std::endl; using S = opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy; S strategy = static_cast(0); strategy = S::PROFILE | S::OPTIMIZED | strategy; mgb::gopt::modify_opr_algo_strategy_inplace(network.output_var_list, strategy); } auto data = network.tensor_map["data"]; cv::Mat image = cv::imread(input_image_path); cv::Mat pr_img = static_resize(image); float *data_ptr = data->resize({1, 3, 640, 640}).ptr(); blobFromImage(pr_img, data_ptr); HostTensorND predict; std::unique_ptr func = network.graph->compile( {make_callback_copy(network.output_var_map.begin()->second, predict)}); for (auto i = 0; i < warmup_count; i++) { std::cout << "warmup: " << i << std::endl; func->execute(); func->wait(); } auto start = std::chrono::system_clock::now(); func->execute(); func->wait(); auto end = std::chrono::system_clock::now(); std::chrono::duration exec_seconds = end - start; std::cout << "elapsed time: " << exec_seconds.count() << "s" << std::endl; float *predict_ptr = predict.ptr(); int img_w = image.cols; int img_h = image.rows; float scale = std::min(INPUT_W / (image.cols * 1.0), INPUT_H / (image.rows * 1.0)); std::vector objects; decode_outputs(predict_ptr, objects, scale, img_w, img_h); draw_objects(image, objects); return EXIT_SUCCESS; }