#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # Copyright (c) Megvii, Inc. and its affiliates. import argparse import logging as log import os import sys import cv2 import numpy as np from openvino.inference_engine import IECore from yolox.data.data_augment import preproc as preprocess from yolox.data.datasets import COCO_CLASSES from yolox.utils import mkdir, multiclass_nms, demo_postprocess, vis def parse_args() -> argparse.Namespace: """Parse and return command line arguments""" parser = argparse.ArgumentParser(add_help=False) args = parser.add_argument_group('Options') args.add_argument( '-h', '--help', action='help', help='Show this help message and exit.') args.add_argument( '-m', '--model', required=True, type=str, help='Required. Path to an .xml or .onnx file with a trained model.') args.add_argument( '-i', '--input', required=True, type=str, help='Required. Path to an image file.') args.add_argument( '-o', '--output_dir', type=str, default='demo_output', help='Path to your output dir.') args.add_argument( '-s', '--score_thr', type=float, default=0.3, help="Score threshould to visualize the result.") args.add_argument( '-d', '--device', default='CPU', type=str, help='Optional. Specify the target device to infer on; CPU, GPU, \ MYRIAD, HDDL or HETERO: is acceptable. The sample will look \ for a suitable plugin for device specified. Default value \ is CPU.') args.add_argument( '--labels', default=None, type=str, help='Option:al. Path to a labels mapping file.') args.add_argument( '-nt', '--number_top', default=10, type=int, help='Optional. Number of top results.') return parser.parse_args() def main(): log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.INFO, stream=sys.stdout) args = parse_args() # ---------------------------Step 1. Initialize inference engine core-------------------------------------------------- log.info('Creating Inference Engine') ie = IECore() # ---------------------------Step 2. Read a model in OpenVINO Intermediate Representation or ONNX format--------------- log.info(f'Reading the network: {args.model}') # (.xml and .bin files) or (.onnx file) net = ie.read_network(model=args.model) if len(net.input_info) != 1: log.error('Sample supports only single input topologies') return -1 if len(net.outputs) != 1: log.error('Sample supports only single output topologies') return -1 # ---------------------------Step 3. Configure input & output---------------------------------------------------------- log.info('Configuring input and output blobs') # Get names of input and output blobs input_blob = next(iter(net.input_info)) out_blob = next(iter(net.outputs)) # Set input and output precision manually net.input_info[input_blob].precision = 'FP32' net.outputs[out_blob].precision = 'FP16' # Get a number of classes recognized by a model num_of_classes = max(net.outputs[out_blob].shape) # ---------------------------Step 4. Loading model to the device------------------------------------------------------- log.info('Loading the model to the plugin') exec_net = ie.load_network(network=net, device_name=args.device) # ---------------------------Step 5. Create infer request-------------------------------------------------------------- # load_network() method of the IECore class with a specified number of requests (default 1) returns an ExecutableNetwork # instance which stores infer requests. So you already created Infer requests in the previous step. # ---------------------------Step 6. Prepare input--------------------------------------------------------------------- origin_img = cv2.imread(args.input) _, _, h, w = net.input_info[input_blob].input_data.shape image, ratio = preprocess(origin_img, (h, w)) # ---------------------------Step 7. Do inference---------------------------------------------------------------------- log.info('Starting inference in synchronous mode') res = exec_net.infer(inputs={input_blob: image}) # ---------------------------Step 8. Process output-------------------------------------------------------------------- res = res[out_blob] predictions = demo_postprocess(res, (h, w))[0] boxes = predictions[:, :4] scores = predictions[:, 4, None] * predictions[:, 5:] boxes_xyxy = np.ones_like(boxes) boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2. boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2. boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2. boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2. boxes_xyxy /= ratio dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) if dets is not None: final_boxes = dets[:, :4] final_scores, final_cls_inds = dets[:, 4], dets[:, 5] origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds, conf=args.score_thr, class_names=COCO_CLASSES) mkdir(args.output_dir) output_path = os.path.join(args.output_dir, os.path.basename(args.input)) cv2.imwrite(output_path, origin_img) if __name__ == '__main__': sys.exit(main())