# YOLOX-TensorRT in Python This tutorial includes a Python demo for TensorRT. ## Install TensorRT Toolkit Please follow the [TensorRT Installation Guide](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html) and [torch2trt gitrepo](https://github.com/NVIDIA-AI-IOT/torch2trt) to install TensorRT and torch2trt. ## Convert model YOLOX models can be easily conveted to TensorRT models using torch2trt If you want to convert our model, use the flag -n to specify a model name: ```shell python tools/trt.py -n -c ``` For example: ```shell python tools/trt.py -n yolox-s -c your_ckpt.pth ``` can be: yolox-nano, yolox-tiny. yolox-s, yolox-m, yolox-l, yolox-x. If you want to convert your customized model, use the flag -f to specify you exp file: ```shell python tools/trt.py -f -c ``` For example: ```shell python tools/trt.py -f /path/to/your/yolox/exps/yolox_s.py -c your_ckpt.pth ``` *yolox_s.py* can be any exp file modified by you. The converted model and the serialized engine file (for C++ demo) will be saved on your experiment output dir. ## Demo The TensorRT python demo is merged on our pytorch demo file, so you can run the pytorch demo command with ```--trt```. ```shell python tools/demo.py image -n yolox-s --trt --save_result ``` or ```shell python tools/demo.py image -f exps/default/yolox_s.py --trt --save_result ```