# YOLOX-CPP-ncnn Cpp file compile of YOLOX object detection base on [ncnn](https://github.com/Tencent/ncnn). ## Tutorial ### Step1 Clone [ncnn](https://github.com/Tencent/ncnn) first, then please following [build tutorial of ncnn](https://github.com/Tencent/ncnn/wiki/how-to-build) to build on your own device. ### Step2 First, we try the original onnx2ncnn solution by using provided tools to generate onnx file. For example, if you want to generate onnx file of yolox-s, please run the following command: ```shell cd python3 tools/export_onnx.py -n yolox-s ``` Then a yolox.onnx file is generated. ### Step3 Generate ncnn param and bin file. ```shell cd cd build/tools/ncnn ./onnx2ncnn yolox.onnx model.param model.bin ``` Since Focus module is not supported in ncnn. You will see warnings like: ```shell Unsupported slice step! ``` However, don't worry on this as a C++ version of Focus layer is already implemented in yolox.cpp. ### Step4 Open **model.param**, and modify it. For more information on the ncnn param and model file structure, please take a look at this [wiki](https://github.com/Tencent/ncnn/wiki/param-and-model-file-structure). Before (just an example): ``` 295 328 Input images 0 1 images Split splitncnn_input0 1 4 images images_splitncnn_0 images_splitncnn_1 images_splitncnn_2 images_splitncnn_3 Crop Slice_4 1 1 images_splitncnn_3 647 -23309=1,0 -23310=1,2147483647 -23311=1,1 Crop Slice_9 1 1 647 652 -23309=1,0 -23310=1,2147483647 -23311=1,2 Crop Slice_14 1 1 images_splitncnn_2 657 -23309=1,0 -23310=1,2147483647 -23311=1,1 Crop Slice_19 1 1 657 662 -23309=1,1 -23310=1,2147483647 -23311=1,2 Crop Slice_24 1 1 images_splitncnn_1 667 -23309=1,1 -23310=1,2147483647 -23311=1,1 Crop Slice_29 1 1 667 672 -23309=1,0 -23310=1,2147483647 -23311=1,2 Crop Slice_34 1 1 images_splitncnn_0 677 -23309=1,1 -23310=1,2147483647 -23311=1,1 Crop Slice_39 1 1 677 682 -23309=1,1 -23310=1,2147483647 -23311=1,2 Concat Concat_40 4 1 652 672 662 682 683 0=0 ... ``` * Change first number for 295 to 295 - 9 = 286 (since we will remove 10 layers and add 1 layers, total layers number should minus 9). * Then remove 10 lines of code from Split to Concat, but remember the last but 2nd number: 683. * Add YoloV5Focus layer After Input (using previous number 683): ``` YoloV5Focus focus 1 1 images 683 ``` After(just an example): ``` 286 328 Input images 0 1 images YoloV5Focus focus 1 1 images 683 ... ``` ### Step5 Use ncnn_optimize to generate new param and bin: ```shell # suppose you are still under ncnn/build/tools/ncnn dir. ../ncnnoptimize model.param model.bin yolox.param yolox.bin 65536 ``` ### Step6 Copy or Move yolox.cpp file into ncnn/examples, modify the CMakeList.txt to add our implementation, then build. ### Step7 Inference image with executable file yolox, enjoy the detect result: ```shell ./yolox demo.jpg ``` ### Bounus Solution: As ncnn has released another model conversion tool called [pnnx](https://zhuanlan.zhihu.com/p/427620428) which directly finishs the pytorch2ncnn process via torchscript, we can also try on this. ```shell # take yolox-s as an example python3 tools/export_torchscript.py -n yolox-s -c /path/to/your_checkpoint_files ``` Then a `yolox.torchscript.pt` will be generated. Copy this file to your pnnx build directory (pnnx also provides pre-built packages [here](https://github.com/pnnx/pnnx/releases/tag/20220720)). ```shell # suppose you put the yolox.torchscript.pt in a seperate folder ./pnnx yolox/yolox.torchscript.pt inputshape=[1,3,640,640] # for zsh users, please use inputshape='[1,3,640,640]' ``` Still, as ncnn does not support `slice` op as we mentioned in [Step3](https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/ncnn/cpp#step3). You will still see the warnings during this process. Then multiple pnnx related files will be genreated in your yolox folder. Use `yolox.torchscript.ncnn.param` and `yolox.torchscript.ncnn.bin` as your converted model. Then we can follow back to our [Step4](https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/ncnn/cpp#step4) for the rest of our implementation. ## Acknowledgement * [ncnn](https://github.com/Tencent/ncnn)