import os import json import subprocess import numpy as np from PIL import Image from tqdm import tqdm from torch.utils.data import Dataset from easydict import EasyDict as edict from torchvision.datasets.utils import download_url from .perturbations import TextShuffler from .constants import ARO_ROOT, COCO_ROOT, FLICKR_ROOT from .retrieval import pre_caption class VG_Relation(Dataset): def __init__(self, image_preprocess, text_perturb_fn=None, image_perturb_fn=None, root_dir=ARO_ROOT, download=False): ''' image_preprocess: a function that takes in a PIL image and returns a tensor. text_perturb_fn: Not used for this dataset. Just for compatibility with other datasets. image_perturb_fn: Not used for this dataset. Just for compatibility with other datasets. root_dir: Directory for the VG-R dataset. download: Whether to download the dataset if it does not exist. ''' self.root_dir = root_dir annotation_file = os.path.join(root_dir, "visual_genome_relation.json") image_dir = os.path.join(root_dir, "images") if not os.path.exists(image_dir): print("Image Directory for VG_Relation could not be found!") if download: self.download() else: raise RuntimeError("Please either download the dataset by letting `--download` or specify the correct directory.") if not os.path.exists(annotation_file): subprocess.call(["gdown", "--id", "1kX2iCHEv0CADL8dSO1nMdW-V0NqIAiP3", "--output", annotation_file]) with open(annotation_file, "r") as f: self.dataset = json.load(f) self.all_relations = list() for item in self.dataset: item["image_path"] = os.path.join(image_dir, item["image_path"]) self.all_relations.append(item["relation_name"]) self.image_preprocess = image_preprocess def __len__(self): return len(self.dataset) def __getitem__(self, index): test_case = self.dataset[index] image = Image.open(test_case["image_path"]).convert('RGB') # Get the bounding box that contains the relation. This is to remove the irrelevant details in the scene. image = image.crop((test_case["bbox_x"], test_case["bbox_y"], test_case["bbox_x"] + test_case["bbox_w"], test_case["bbox_y"] + test_case["bbox_h"])) if self.image_preprocess is not None: image = self.image_preprocess(image) # Each test case has a correct and incorrect caption. true_caption = test_case["true_caption"] false_caption = test_case["false_caption"] item = edict({"image_options": [image], "caption_options": [false_caption, true_caption]}) return item def download(self): os.makedirs(self.root_dir, exist_ok=True) image_zip_file = os.path.join(self.root_dir, "vgr_vga_images.zip") subprocess.call(["gdown", "--no-cookies", "1qaPlrwhGNMrR3a11iopZUT_GPP_LrgP9", "--output", image_zip_file]) subprocess.call(["unzip", "vgr_vga_images.zip"], cwd=self.root_dir) def evaluate_scores(self, scores): """ Scores: N x 1 x 2, i.e. first caption is the perturbed one, second is the positive one """ if isinstance(scores, tuple): scores_i2t = scores[1] scores_t2i = scores[0] else: scores_t2i = scores scores_i2t = scores metrics = {"Accuracy": None} preds = np.argmax(np.squeeze(scores_i2t, axis=1), axis=-1) correct_mask = (preds == 1) metrics["Accuracy"] = np.mean(correct_mask) all_relations = np.array(self.all_relations) result_records = [] # Log the accuracy of all relations for relation in np.unique(all_relations): relation_mask = (all_relations == relation) if relation_mask.sum() == 0: continue result_records.append({ "Relation": relation, "Accuracy": correct_mask[relation_mask].mean(), "Count": relation_mask.sum(), "Dataset": "Visual Genome Relation" }) return result_records class VG_Attribution(Dataset): def __init__(self, image_preprocess, text_perturb_fn=None, image_perturb_fn=None, root_dir=ARO_ROOT, download=False): ''' image_preprocess: a function that takes in a PIL image and returns a tensor. text_perturb_fn: Not used for this dataset. Just for compatibility with other datasets. image_perturb_fn: Not used for this dataset. Just for compatibility with other datasets. root_dir: Directory for the VG-A dataset. ''' self.root_dir = root_dir annotation_file = os.path.join(root_dir, "visual_genome_attribution.json") image_dir = os.path.join(root_dir, "images") if not os.path.exists(image_dir): print("Image Directory for VG_Attribution could not be found!") if download: self.download() else: raise RuntimeError("Please either download the dataset by letting `--download` or specify the correct directory.") if not os.path.exists(annotation_file): subprocess.call(["gdown", "--id", "13tWvOrNOLHxl3Rm9cR3geAdHx2qR3-Tw", "--output", annotation_file]) with open(annotation_file, "r") as f: self.dataset = json.load(f) for item in self.dataset: item["image_path"] = os.path.join(image_dir, item["image_path"]) # Set of attributes in each test case self.all_attributes = [f"{item['attributes'][0]}_{item['attributes'][1]}" for item in self.dataset] self.image_preprocess = image_preprocess def __len__(self): return len(self.dataset) def __getitem__(self, index): test_case = self.dataset[index] image = Image.open(test_case["image_path"]).convert('RGB') # Get the bounding box that contains the relation. This is to remove the irrelevant details in the scene. image = image.crop((test_case["bbox_x"], test_case["bbox_y"], test_case["bbox_x"] + test_case["bbox_w"], test_case["bbox_y"] + test_case["bbox_h"])) if self.image_preprocess is not None: image = self.image_preprocess(image) # Each test case has a correct and incorrect caption. true_caption = test_case["true_caption"] false_caption = test_case["false_caption"] item = edict({"image_options": [image], "caption_options": [false_caption, true_caption]}) return item def download(self): os.makedirs(self.root_dir, exist_ok=True) image_zip_file = os.path.join(self.root_dir, "vgr_vga_images.zip") subprocess.call(["gdown", "--no-cookies", "1qaPlrwhGNMrR3a11iopZUT_GPP_LrgP9", "--output", image_zip_file]) subprocess.call(["unzip", "vgr_vga_images.zip"], cwd=self.root_dir) def evaluate_scores(self, scores): """ Scores: N x 1 x 2, i.e. first caption is the perturbed one, second is the positive one """ if isinstance(scores, tuple): scores_i2t = scores[1] scores_t2i = scores[0] else: scores_t2i = scores scores_i2t = scores preds = np.argmax(np.squeeze(scores_i2t, axis=1), axis=-1) correct_mask = (preds == 1) result_records = [] all_attributes = np.array(self.all_attributes) for attr in np.unique(all_attributes): attr_mask = (all_attributes == attr) if attr_mask.sum() < 25: continue result_records.append({ "Attributes": attr, "Accuracy": correct_mask[attr_mask].mean(), "Count": attr_mask.sum(), "Dataset": "Visual Genome Attribution" }) return result_records class COCO_Order(Dataset): def __init__(self, image_preprocess=None, root_dir=COCO_ROOT, max_words=30, split="test", image_perturb_fn=None, download=False): """ COCO Order Dataset. image_preprocess: image preprocessing function root_dir: The directory of the coco dataset. This directory should contain test2014 files. max_words: Cropping the caption to max_words. split: 'val' or 'test' image_perturb_fn: not used; for compatibility. download: Whether to download the dataset if it does not exist. """ shuffler = TextShuffler() perturb_functions = [shuffler.shuffle_nouns_and_adj, shuffler.shuffle_allbut_nouns_and_adj, shuffler.shuffle_within_trigrams, shuffler.shuffle_trigrams] self.root_dir = root_dir if not os.path.exists(root_dir): print("Directory for COCO could not be found!") if download: print("Downloading COCO now.") self.download() else: raise RuntimeError("Please either download the dataset by letting `--download` or specify the correct directory.") urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json', 'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'} filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'} download_url(urls[split],root_dir) self.annotation = json.load(open(os.path.join(root_dir,filenames[split]),'r')) self.image_preprocess = image_preprocess self.image_root = root_dir self.test_cases = [] for img_id, ann in tqdm(enumerate(self.annotation)): for i, caption in enumerate(ann['caption']): test_case = {} test_case["image"] = ann["image"] test_case["caption_options"] = [pre_caption(caption,max_words)] for perturb_fn in perturb_functions: test_case["caption_options"].append(pre_caption(perturb_fn(caption), max_words)) self.test_cases.append(test_case) def __len__(self): return len(self.test_cases) def __getitem__(self, index): test_case = self.test_cases[index] image_path = os.path.join(self.image_root, test_case["image"]) image = Image.open(image_path).convert('RGB') if self.image_preprocess is not None: image = self.image_preprocess(image) item = edict({"image_options": [image], "caption_options": test_case["caption_options"]}) return item def download(self): import subprocess os.makedirs(self.root_dir, exist_ok=True) #subprocess.call(["wget", "http://images.cocodataset.org/zips/train2014.zip"], cwd=self.root_dir) #subprocess.call(["unzip", "train2014.zip"], cwd=self.root_dir) subprocess.call(["wget", "http://images.cocodataset.org/zips/val2014.zip"], cwd=self.root_dir) subprocess.call(["unzip", "val2014.zip"], cwd=self.root_dir) subprocess.call(["wget", "http://images.cocodataset.org/zips/test2014.zip"], cwd=self.root_dir) subprocess.call(["unzip", "test2014.zip"], cwd=self.root_dir) def evaluate_scores(self, scores): if isinstance(scores, tuple): scores_i2t = scores[0] scores_t2i = scores[1].T # Make it N_ims x N_text else: scores_t2i = scores scores_i2t = scores preds = np.argmax(np.squeeze(scores_i2t, axis=1), axis=-1) correct_mask = (preds == 0) records = [{"Precision@1": np.mean(correct_mask)}] return records class Flickr30k_Order(Dataset): def __init__(self, image_preprocess, split, root_dir=FLICKR_ROOT, max_words=30, *args, **kwargs): """ image_preprocess: image preprocessing function split: 'val' or 'test' root_dir: The directory of the flickr30k images. This should contain the `flickr30k-images` directory that \ contains all the images. """ urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_val.json', 'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_test.json'} filenames = {'val':'flickr30k_val.json','test':'flickr30k_test.json'} if not os.path.exists(root_dir): print("Directory for Flickr30k could not be found!") flickr_url = "https://forms.illinois.edu/sec/229675" raise RuntimeError(f"You need to manually sign up and download the dataset from {flickr_url} and place it in the `root_dir`.") download_url(urls[split],root_dir) self.annotation = json.load(open(os.path.join(root_dir,filenames[split]),'r')) self.image_preprocess = image_preprocess self.root_dir = root_dir self.test_cases = [] shuffler = TextShuffler() perturb_functions = [shuffler.shuffle_nouns_and_adj, shuffler.shuffle_allbut_nouns_and_adj, shuffler.shuffle_within_trigrams, shuffler.shuffle_trigrams] for img_id, ann in tqdm(enumerate(self.annotation)): for i, caption in enumerate(ann['caption']): test_case = {} test_case["image"] = ann["image"] test_case["caption_options"] = [pre_caption(caption,max_words)] for perturb_fn in perturb_functions: test_case["caption_options"].append(pre_caption(perturb_fn(caption), max_words)) self.test_cases.append(test_case) def __len__(self): return len(self.test_cases) def __getitem__(self, index): test_case = self.test_cases[index] image_path = os.path.join(self.root_dir, test_case["image"]) image = Image.open(image_path).convert('RGB') if self.image_preprocess is not None: image = self.image_preprocess(image) item = edict({"image_options": [image], "caption_options": test_case["caption_options"]}) return item def evaluate_scores(self, scores): if isinstance(scores, tuple): scores_i2t = scores[0] scores_t2i = scores[1].T # Make it N_ims x N_text else: scores_t2i = scores scores_i2t = scores preds = np.argmax(np.squeeze(scores_i2t, axis=1), axis=-1) correct_mask = (preds == 0) result_records = [{"Precision@1": np.mean(correct_mask)}] return result_records def get_visual_genome_relation(image_preprocess, text_perturb_fn=None, image_perturb_fn=None, download=False): return VG_Relation(image_preprocess=image_preprocess, text_perturb_fn=text_perturb_fn, image_perturb_fn=image_perturb_fn, download=download) def get_visual_genome_attribution(image_preprocess, text_perturb_fn=None, image_perturb_fn=None, download=False): return VG_Attribution(image_preprocess=image_preprocess, text_perturb_fn=text_perturb_fn, image_perturb_fn=image_perturb_fn, download=download) def get_coco_order(image_preprocess, image_perturb_fn, text_perturb_fn, max_words=30, download=False, root_dir=COCO_ROOT, split="test"): return COCO_Order(root_dir=root_dir, split=split, image_preprocess=image_preprocess, image_perturb_fn=image_perturb_fn, max_words=max_words, download=download) def get_flickr30k_order(image_preprocess, image_perturb_fn, text_perturb_fn, max_words=30, download=False, root_dir=FLICKR_ROOT, split="test"): return Flickr30k_Order(root_dir=root_dir, split=split, image_preprocess=image_preprocess, image_perturb_fn=image_perturb_fn, max_words=max_words, download=download)