# BLIP ## Overview The BLIP model was proposed in [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. BLIP is a model that is able to perform various multi-modal tasks including - Visual Question Answering - Image-Text retrieval (Image-text matching) - Image Captioning The abstract from the paper is the following: *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.* ![BLIP.gif](https://s3.amazonaws.com/moonup/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) This model was contributed by [ybelkada](https://huggingface.co/ybelkada). The original code can be found [here](https://github.com/salesforce/BLIP). ## Resources - [Jupyter notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) on how to fine-tune BLIP for image captioning on a custom dataset ## BlipConfig [[autodoc]] BlipConfig - from_text_vision_configs ## BlipTextConfig [[autodoc]] BlipTextConfig ## BlipVisionConfig [[autodoc]] BlipVisionConfig ## BlipProcessor [[autodoc]] BlipProcessor ## BlipImageProcessor [[autodoc]] BlipImageProcessor - preprocess ## BlipModel [[autodoc]] BlipModel - forward - get_text_features - get_image_features ## BlipTextModel [[autodoc]] BlipTextModel - forward ## BlipVisionModel [[autodoc]] BlipVisionModel - forward ## BlipForConditionalGeneration [[autodoc]] BlipForConditionalGeneration - forward ## BlipForImageTextRetrieval [[autodoc]] BlipForImageTextRetrieval - forward ## BlipForQuestionAnswering [[autodoc]] BlipForQuestionAnswering - forward ## TFBlipModel [[autodoc]] TFBlipModel - call - get_text_features - get_image_features ## TFBlipTextModel [[autodoc]] TFBlipTextModel - call ## TFBlipVisionModel [[autodoc]] TFBlipVisionModel - call ## TFBlipForConditionalGeneration [[autodoc]] TFBlipForConditionalGeneration - call ## TFBlipForImageTextRetrieval [[autodoc]] TFBlipForImageTextRetrieval - call ## TFBlipForQuestionAnswering [[autodoc]] TFBlipForQuestionAnswering - call