# Classificação de tokens A classificação de tokens atribui um rótulo a tokens individuais em uma frase. Uma das tarefas de classificação de tokens mais comuns é o Reconhecimento de Entidade Nomeada, também chamada de NER (sigla em inglês para Named Entity Recognition). O NER tenta encontrar um rótulo para cada entidade em uma frase, como uma pessoa, local ou organização. Este guia mostrará como realizar o fine-tuning do [DistilBERT](https://huggingface.co/distilbert-base-uncased) no conjunto de dados [WNUT 17](https://huggingface.co/datasets/wnut_17) para detectar novas entidades. Consulte a [página de tarefas de classificação de tokens](https://huggingface.co/tasks/token-classification) para obter mais informações sobre outras formas de classificação de tokens e seus modelos, conjuntos de dados e métricas associadas. ## Carregando o conjunto de dados WNUT 17 Carregue o conjunto de dados WNUT 17 da biblioteca 🤗 Datasets: ```py >>> from datasets import load_dataset >>> wnut = load_dataset("wnut_17") ``` E dê uma olhada em um exemplo: ```py >>> wnut["train"][0] {'id': '0', 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'] } ``` Cada número em `ner_tags` representa uma entidade. Converta o número em um rótulo para obter mais informações: ```py >>> label_list = wnut["train"].features[f"ner_tags"].feature.names >>> label_list [ "O", "B-corporation", "I-corporation", "B-creative-work", "I-creative-work", "B-group", "I-group", "B-location", "I-location", "B-person", "I-person", "B-product", "I-product", ] ``` O `ner_tag` descreve uma entidade, como uma organização, local ou pessoa. A letra que prefixa cada `ner_tag` indica a posição do token da entidade: - `B-` indica o início de uma entidade. - `I-` indica que um token está contido dentro da mesma entidade (por exemplo, o token `State` pode fazer parte de uma entidade como `Empire State Building`). - `0` indica que o token não corresponde a nenhuma entidade. ## Pré-processamento Carregue o tokenizer do DistilBERT para processar os `tokens`: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ``` Como a entrada já foi dividida em palavras, defina `is_split_into_words=True` para tokenizar as palavras em subpalavras: ```py >>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True) >>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"]) >>> tokens ['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]'] ``` Ao adicionar os tokens especiais `[CLS]` e `[SEP]` e a tokenização de subpalavras uma incompatibilidade é gerada entre a entrada e os rótulos. Uma única palavra correspondente a um único rótulo pode ser dividida em duas subpalavras. Você precisará realinhar os tokens e os rótulos da seguinte forma: 1. Mapeie todos os tokens para a palavra correspondente com o método [`word_ids`](https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.Encoding.word_ids). 2. Atribuindo o rótulo `-100` aos tokens especiais `[CLS]` e `[SEP]` para que a função de loss do PyTorch ignore eles. 3. Rotular apenas o primeiro token de uma determinada palavra. Atribuindo `-100` a outros subtokens da mesma palavra. Aqui está como você pode criar uma função para realinhar os tokens e rótulos e truncar sequências para não serem maiores que o comprimento máximo de entrada do DistilBERT: ```py >>> def tokenize_and_align_labels(examples): ... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) ... labels = [] ... for i, label in enumerate(examples[f"ner_tags"]): ... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word. ... previous_word_idx = None ... label_ids = [] ... for word_idx in word_ids: # Set the special tokens to -100. ... if word_idx is None: ... label_ids.append(-100) ... elif word_idx != previous_word_idx: # Only label the first token of a given word. ... label_ids.append(label[word_idx]) ... else: ... label_ids.append(-100) ... previous_word_idx = word_idx ... labels.append(label_ids) ... tokenized_inputs["labels"] = labels ... return tokenized_inputs ``` Use a função [`map`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map) do 🤗 Datasets para tokenizar e alinhar os rótulos em todo o conjunto de dados. Você pode acelerar a função `map` configurando `batched=True` para processar vários elementos do conjunto de dados de uma só vez: ```py >>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True) ``` Use o [`DataCollatorForTokenClassification`] para criar um batch de exemplos. Ele também *preencherá dinamicamente* seu texto e rótulos para o comprimento do elemento mais longo em seu batch, para que tenham um comprimento uniforme. Embora seja possível preencher seu texto na função `tokenizer` configurando `padding=True`, o preenchimento dinâmico é mais eficiente. ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf") ``` ## Treinamento Carregue o DistilBERT com o [`AutoModelForTokenClassification`] junto com o número de rótulos esperados: ```py >>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer >>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased", num_labels=14) ``` Se você não estiver familiarizado com o fine-tuning de um modelo com o [`Trainer`], dê uma olhada no tutorial básico [aqui](../training#finetune-with-trainer)! Nesse ponto, restam apenas três passos: 1. Definir seus hiperparâmetros de treinamento em [`TrainingArguments`]. 2. Passar os argumentos de treinamento para o [`Trainer`] junto com o modelo, conjunto de dados, tokenizador e o data collator. 3. Chamar a função [`~Trainer.train`] para executar o fine-tuning do seu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... num_train_epochs=3, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_wnut["train"], ... eval_dataset=tokenized_wnut["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... ) >>> trainer.train() ``` Para executar o fine-tuning de um modelo no TensorFlow, comece convertendo seu conjunto de dados para o formato `tf.data.Dataset` com [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.to_tf_dataset). Nessa execução você deverá especificar as entradas e rótulos (no parâmetro `columns`), se deseja embaralhar o conjunto de dados, o tamanho do batch e o data collator: ```py >>> tf_train_set = tokenized_wnut["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_validation_set = tokenized_wnut["validation"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` Se você não estiver familiarizado com o fine-tuning de um modelo com o Keras, dê uma olhada no tutorial básico [aqui](training#finetune-with-keras)! Configure o otimizador e alguns hiperparâmetros de treinamento: ```py >>> from transformers import create_optimizer >>> batch_size = 16 >>> num_train_epochs = 3 >>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs >>> optimizer, lr_schedule = create_optimizer( ... init_lr=2e-5, ... num_train_steps=num_train_steps, ... weight_decay_rate=0.01, ... num_warmup_steps=0, ... ) ``` Carregue o DistilBERT com o [`TFAutoModelForTokenClassification`] junto com o número de rótulos esperados: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased", num_labels=2) ``` Configure o modelo para treinamento com o método [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Chame o método [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para executar o fine-tuning do modelo: ```py >>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3) ``` Para obter um exemplo mais aprofundado de como executar o fine-tuning de um modelo para classificação de tokens, dê uma olhada nesse [notebook utilizando PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb) ou nesse [notebook utilizando TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).