File size: 10,452 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# coding=utf-8
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest
from typing import Dict, List, Optional, Union

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import BridgeTowerImageProcessor


class BridgeTowerImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        do_resize: bool = True,
        size: Dict[str, int] = None,
        size_divisor: int = 32,
        do_rescale: bool = True,
        rescale_factor: Union[int, float] = 1 / 255,
        do_normalize: bool = True,
        do_center_crop: bool = True,
        image_mean: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073],
        image_std: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711],
        do_pad: bool = True,
        batch_size=7,
        min_resolution=30,
        max_resolution=400,
        num_channels=3,
    ):
        self.parent = parent
        self.do_resize = do_resize
        self.size = size if size is not None else {"shortest_edge": 288}
        self.size_divisor = size_divisor
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.do_center_crop = do_center_crop
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_pad = do_pad
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution

    def prepare_image_processor_dict(self):
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "size_divisor": self.size_divisor,
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
        This function computes the expected height and width when providing images to BridgeTowerImageProcessor,
        assuming do_resize is set to True with a scalar size and size_divisor.
        """
        if not batched:
            size = self.size["shortest_edge"]
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
            scale = size / min(w, h)
            if h < w:
                newh, neww = size, scale * w
            else:
                newh, neww = scale * h, size

            max_size = int((1333 / 800) * size)
            if max(newh, neww) > max_size:
                scale = max_size / max(newh, neww)
                newh = newh * scale
                neww = neww * scale

            newh, neww = int(newh + 0.5), int(neww + 0.5)
            expected_height, expected_width = (
                newh // self.size_divisor * self.size_divisor,
                neww // self.size_divisor * self.size_divisor,
            )

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width


@require_torch
@require_vision
class BridgeTowerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = BridgeTowerImageProcessor if is_vision_available() else None

    def setUp(self):
        self.image_processor_tester = BridgeTowerImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "size_divisor"))

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
        self.assertEqual(
            encoded_images.shape,
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
        self.assertEqual(
            encoded_images.shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
        self.assertEqual(
            encoded_images.shape,
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
        self.assertEqual(
            encoded_images.shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
        self.assertEqual(
            encoded_images.shape,
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
        self.assertEqual(
            encoded_images.shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_equivalence_pad_and_create_pixel_mask(self):
        # Initialize feature_extractors
        image_processing_1 = self.image_processing_class(**self.image_processor_dict)
        image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test whether the method "pad_and_return_pixel_mask" and calling the image processor return the same tensors
        encoded_images_with_method = image_processing_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt")
        encoded_images = image_processing_2(image_inputs, return_tensors="pt")

        self.assertTrue(
            torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
        )
        self.assertTrue(
            torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4)
        )