Spaces:
Runtime error
Runtime error
<!--Copyright 2020 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
the License. You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
specific language governing permissions and limitations under the License. | |
--> | |
# Converting From Tensorflow Checkpoints | |
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models | |
that can be loaded using the `from_pretrained` methods of the library. | |
<Tip> | |
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any | |
transformers >= 2.3.0 installation. | |
The documentation below reflects the **transformers-cli convert** command format. | |
</Tip> | |
## BERT | |
You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the | |
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script. | |
This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated | |
configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from | |
the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can | |
be imported using `from_pretrained()` (see example in [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py) ). | |
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow | |
checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (\ | |
`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too. | |
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (`pip install tensorflow`). The rest of the repository only requires PyTorch. | |
Here is an example of the conversion process for a pre-trained `BERT-Base Uncased` model: | |
```bash | |
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12 | |
transformers-cli convert --model_type bert \ | |
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \ | |
--config $BERT_BASE_DIR/bert_config.json \ | |
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin | |
``` | |
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/bert#pre-trained-models). | |
## ALBERT | |
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the | |
[convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py) script. | |
The CLI takes as input a TensorFlow checkpoint (three files starting with `model.ckpt-best`) and the accompanying | |
configuration file (`albert_config.json`), then creates and saves a PyTorch model. To run this conversion you will | |
need to have TensorFlow and PyTorch installed. | |
Here is an example of the conversion process for the pre-trained `ALBERT Base` model: | |
```bash | |
export ALBERT_BASE_DIR=/path/to/albert/albert_base | |
transformers-cli convert --model_type albert \ | |
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \ | |
--config $ALBERT_BASE_DIR/albert_config.json \ | |
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin | |
``` | |
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/albert#pre-trained-models). | |
## OpenAI GPT | |
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint | |
save as the same format than OpenAI pretrained model (see [here](https://github.com/openai/finetune-transformer-lm)\ | |
) | |
```bash | |
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights | |
transformers-cli convert --model_type gpt \ | |
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
[--config OPENAI_GPT_CONFIG] \ | |
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \ | |
``` | |
## OpenAI GPT-2 | |
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see [here](https://github.com/openai/gpt-2)) | |
```bash | |
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights | |
transformers-cli convert --model_type gpt2 \ | |
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
[--config OPENAI_GPT2_CONFIG] \ | |
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK] | |
``` | |
## Transformer-XL | |
Here is an example of the conversion process for a pre-trained Transformer-XL model (see [here](https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models)) | |
```bash | |
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint | |
transformers-cli convert --model_type transfo_xl \ | |
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
[--config TRANSFO_XL_CONFIG] \ | |
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK] | |
``` | |
## XLNet | |
Here is an example of the conversion process for a pre-trained XLNet model: | |
```bash | |
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint | |
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config | |
transformers-cli convert --model_type xlnet \ | |
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \ | |
--config $TRANSFO_XL_CONFIG_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \ | |
[--finetuning_task_name XLNET_FINETUNED_TASK] \ | |
``` | |
## XLM | |
Here is an example of the conversion process for a pre-trained XLM model: | |
```bash | |
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint | |
transformers-cli convert --model_type xlm \ | |
--tf_checkpoint $XLM_CHECKPOINT_PATH \ | |
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT | |
[--config XML_CONFIG] \ | |
[--finetuning_task_name XML_FINETUNED_TASK] | |
``` | |
## T5 | |
Here is an example of the conversion process for a pre-trained T5 model: | |
```bash | |
export T5=/path/to/t5/uncased_L-12_H-768_A-12 | |
transformers-cli convert --model_type t5 \ | |
--tf_checkpoint $T5/t5_model.ckpt \ | |
--config $T5/t5_config.json \ | |
--pytorch_dump_output $T5/pytorch_model.bin | |
``` | |