Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import AlbertConfig, is_tf_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING | |
from transformers.models.albert.modeling_tf_albert import ( | |
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFAlbertForMaskedLM, | |
TFAlbertForMultipleChoice, | |
TFAlbertForPreTraining, | |
TFAlbertForQuestionAnswering, | |
TFAlbertForSequenceClassification, | |
TFAlbertForTokenClassification, | |
TFAlbertModel, | |
) | |
class TFAlbertModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
embedding_size=16, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = 13 | |
self.seq_length = 7 | |
self.is_training = True | |
self.use_input_mask = True | |
self.use_token_type_ids = True | |
self.use_labels = True | |
self.vocab_size = 99 | |
self.embedding_size = 16 | |
self.hidden_size = 32 | |
self.num_hidden_layers = 5 | |
self.num_attention_heads = 4 | |
self.intermediate_size = 37 | |
self.hidden_act = "gelu" | |
self.hidden_dropout_prob = 0.1 | |
self.attention_probs_dropout_prob = 0.1 | |
self.max_position_embeddings = 512 | |
self.type_vocab_size = 16 | |
self.type_sequence_label_size = 2 | |
self.initializer_range = 0.02 | |
self.num_labels = 3 | |
self.num_choices = 4 | |
self.scope = None | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = AlbertConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
embedding_size=self.embedding_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
) | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def create_and_check_albert_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFAlbertModel(config=config) | |
# inputs = {'input_ids': input_ids, | |
# 'attention_mask': input_mask, | |
# 'token_type_ids': token_type_ids} | |
# sequence_output, pooled_output = model(**inputs) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_albert_for_pretraining( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFAlbertForPreTraining(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_albert_for_masked_lm( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFAlbertForMaskedLM(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_albert_for_sequence_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFAlbertForSequenceClassification(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_albert_for_question_answering( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFAlbertForQuestionAnswering(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_albert_for_multiple_choice( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = TFAlbertForMultipleChoice(config=config) | |
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) | |
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) | |
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) | |
inputs = { | |
"input_ids": multiple_choice_inputs_ids, | |
"attention_mask": multiple_choice_input_mask, | |
"token_type_ids": multiple_choice_token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices]) | |
def create_and_check_albert_for_token_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFAlbertForTokenClassification(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class TFAlbertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
TFAlbertModel, | |
TFAlbertForPreTraining, | |
TFAlbertForMaskedLM, | |
TFAlbertForSequenceClassification, | |
TFAlbertForQuestionAnswering, | |
TFAlbertForTokenClassification, | |
TFAlbertForMultipleChoice, | |
) | |
if is_tf_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": TFAlbertModel, | |
"fill-mask": TFAlbertForMaskedLM, | |
"question-answering": TFAlbertForQuestionAnswering, | |
"text-classification": TFAlbertForSequenceClassification, | |
"token-classification": TFAlbertForTokenClassification, | |
"zero-shot": TFAlbertForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_head_masking = False | |
test_onnx = False | |
# special case for ForPreTraining model | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING): | |
inputs_dict["sentence_order_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = TFAlbertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_albert_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_albert_model(*config_and_inputs) | |
def test_for_pretraining(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs) | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
list_lm_models = [TFAlbertForPreTraining, TFAlbertForMaskedLM] | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
if model_class in list_lm_models: | |
x = model.get_output_embeddings() | |
assert isinstance(x, tf.keras.layers.Layer) | |
name = model.get_bias() | |
assert isinstance(name, dict) | |
for k, v in name.items(): | |
assert isinstance(v, tf.Variable) | |
else: | |
x = model.get_output_embeddings() | |
assert x is None | |
name = model.get_bias() | |
assert name is None | |
def test_model_from_pretrained(self): | |
for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFAlbertModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class TFAlbertModelIntegrationTest(unittest.TestCase): | |
def test_inference_masked_lm(self): | |
model = TFAlbertForPreTraining.from_pretrained("albert-base-v2") | |
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) | |
output = model(input_ids)[0] | |
expected_shape = [1, 6, 30000] | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = tf.constant( | |
[ | |
[ | |
[4.595668, 0.74462754, -1.818147], | |
[4.5954347, 0.7454184, -1.8188258], | |
[4.5954905, 0.7448235, -1.8182316], | |
] | |
] | |
) | |
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) | |