Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
from datasets import load_dataset | |
from transformers.testing_utils import require_torch, require_vision | |
from transformers.utils import is_torch_available, is_vision_available | |
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs | |
if is_torch_available(): | |
import torch | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import BeitImageProcessor | |
class BeitImageProcessingTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
batch_size=7, | |
num_channels=3, | |
image_size=18, | |
min_resolution=30, | |
max_resolution=400, | |
do_resize=True, | |
size=None, | |
do_center_crop=True, | |
crop_size=None, | |
do_normalize=True, | |
image_mean=[0.5, 0.5, 0.5], | |
image_std=[0.5, 0.5, 0.5], | |
do_reduce_labels=False, | |
): | |
size = size if size is not None else {"height": 20, "width": 20} | |
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} | |
self.parent = parent | |
self.batch_size = batch_size | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.min_resolution = min_resolution | |
self.max_resolution = max_resolution | |
self.do_resize = do_resize | |
self.size = size | |
self.do_center_crop = do_center_crop | |
self.crop_size = crop_size | |
self.do_normalize = do_normalize | |
self.image_mean = image_mean | |
self.image_std = image_std | |
self.do_reduce_labels = do_reduce_labels | |
def prepare_image_processor_dict(self): | |
return { | |
"do_resize": self.do_resize, | |
"size": self.size, | |
"do_center_crop": self.do_center_crop, | |
"crop_size": self.crop_size, | |
"do_normalize": self.do_normalize, | |
"image_mean": self.image_mean, | |
"image_std": self.image_std, | |
"do_reduce_labels": self.do_reduce_labels, | |
} | |
def prepare_semantic_single_inputs(): | |
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") | |
image = Image.open(dataset[0]["file"]) | |
map = Image.open(dataset[1]["file"]) | |
return image, map | |
def prepare_semantic_batch_inputs(): | |
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") | |
image1 = Image.open(ds[0]["file"]) | |
map1 = Image.open(ds[1]["file"]) | |
image2 = Image.open(ds[2]["file"]) | |
map2 = Image.open(ds[3]["file"]) | |
return [image1, image2], [map1, map2] | |
class BeitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): | |
image_processing_class = BeitImageProcessor if is_vision_available() else None | |
def setUp(self): | |
self.image_processor_tester = BeitImageProcessingTester(self) | |
def image_processor_dict(self): | |
return self.image_processor_tester.prepare_image_processor_dict() | |
def test_image_processor_properties(self): | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
self.assertTrue(hasattr(image_processing, "do_resize")) | |
self.assertTrue(hasattr(image_processing, "size")) | |
self.assertTrue(hasattr(image_processing, "do_center_crop")) | |
self.assertTrue(hasattr(image_processing, "center_crop")) | |
self.assertTrue(hasattr(image_processing, "do_normalize")) | |
self.assertTrue(hasattr(image_processing, "image_mean")) | |
self.assertTrue(hasattr(image_processing, "image_std")) | |
def test_image_processor_from_dict_with_kwargs(self): | |
image_processor = self.image_processing_class.from_dict(self.image_processor_dict) | |
self.assertEqual(image_processor.size, {"height": 20, "width": 20}) | |
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) | |
self.assertEqual(image_processor.do_reduce_labels, False) | |
image_processor = self.image_processing_class.from_dict( | |
self.image_processor_dict, size=42, crop_size=84, reduce_labels=True | |
) | |
self.assertEqual(image_processor.size, {"height": 42, "width": 42}) | |
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) | |
self.assertEqual(image_processor.do_reduce_labels, True) | |
def test_batch_feature(self): | |
pass | |
def test_call_pil(self): | |
# Initialize image_processing | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random PIL images | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) | |
for image in image_inputs: | |
self.assertIsInstance(image, Image.Image) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
1, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
# Test batched | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
self.image_processor_tester.batch_size, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
def test_call_numpy(self): | |
# Initialize image_processing | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random numpy tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, np.ndarray) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
1, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
# Test batched | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
self.image_processor_tester.batch_size, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
def test_call_pytorch(self): | |
# Initialize image_processing | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random PyTorch tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, torch.Tensor) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
1, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
# Test batched | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
self.image_processor_tester.batch_size, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
def test_call_segmentation_maps(self): | |
# Initialize image_processing | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random PyTorch tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) | |
maps = [] | |
for image in image_inputs: | |
self.assertIsInstance(image, torch.Tensor) | |
maps.append(torch.zeros(image.shape[-2:]).long()) | |
# Test not batched input | |
encoding = image_processing(image_inputs[0], maps[0], return_tensors="pt") | |
self.assertEqual( | |
encoding["pixel_values"].shape, | |
( | |
1, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
self.assertEqual( | |
encoding["labels"].shape, | |
( | |
1, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
self.assertEqual(encoding["labels"].dtype, torch.long) | |
self.assertTrue(encoding["labels"].min().item() >= 0) | |
self.assertTrue(encoding["labels"].max().item() <= 255) | |
# Test batched | |
encoding = image_processing(image_inputs, maps, return_tensors="pt") | |
self.assertEqual( | |
encoding["pixel_values"].shape, | |
( | |
self.image_processor_tester.batch_size, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
self.assertEqual( | |
encoding["labels"].shape, | |
( | |
self.image_processor_tester.batch_size, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
self.assertEqual(encoding["labels"].dtype, torch.long) | |
self.assertTrue(encoding["labels"].min().item() >= 0) | |
self.assertTrue(encoding["labels"].max().item() <= 255) | |
# Test not batched input (PIL images) | |
image, segmentation_map = prepare_semantic_single_inputs() | |
encoding = image_processing(image, segmentation_map, return_tensors="pt") | |
self.assertEqual( | |
encoding["pixel_values"].shape, | |
( | |
1, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
self.assertEqual( | |
encoding["labels"].shape, | |
( | |
1, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
self.assertEqual(encoding["labels"].dtype, torch.long) | |
self.assertTrue(encoding["labels"].min().item() >= 0) | |
self.assertTrue(encoding["labels"].max().item() <= 255) | |
# Test batched input (PIL images) | |
images, segmentation_maps = prepare_semantic_batch_inputs() | |
encoding = image_processing(images, segmentation_maps, return_tensors="pt") | |
self.assertEqual( | |
encoding["pixel_values"].shape, | |
( | |
2, | |
self.image_processor_tester.num_channels, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
self.assertEqual( | |
encoding["labels"].shape, | |
( | |
2, | |
self.image_processor_tester.crop_size["height"], | |
self.image_processor_tester.crop_size["width"], | |
), | |
) | |
self.assertEqual(encoding["labels"].dtype, torch.long) | |
self.assertTrue(encoding["labels"].min().item() >= 0) | |
self.assertTrue(encoding["labels"].max().item() <= 255) | |
def test_reduce_labels(self): | |
# Initialize image_processing | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 | |
image, map = prepare_semantic_single_inputs() | |
encoding = image_processing(image, map, return_tensors="pt") | |
self.assertTrue(encoding["labels"].min().item() >= 0) | |
self.assertTrue(encoding["labels"].max().item() <= 150) | |
image_processing.do_reduce_labels = True | |
encoding = image_processing(image, map, return_tensors="pt") | |
self.assertTrue(encoding["labels"].min().item() >= 0) | |
self.assertTrue(encoding["labels"].max().item() <= 255) | |